VSTHost

A program to run VST-compatible Pluglins

Version 1.57

Copyright © 2002-2021 by Hermann Seib

Download Information

The latest version of VSTHost can be found at https://www.hermannseib.com/english/vsthost.htm (or
https://www.hermannseib.com/vsthost.htm for the German-speaking minority).

Betas of the upcoming next version can be downloaded from
https://www.hermannseib.com/programs/beta — if you got a problem with the current release version,
you can always look whether it's already fixed before contacting the author about it.

Contact Information

The author can be reached per email at office@hermannseib.com

Translations

The French localization has been done by Patrice Vigier of Vigier Guitars (www.vigierguitars.com).

Skins

Vera Kinter aka Artvera (www.artvera-music.com) has created some beautiful skins for VSTHost
which can be downloaded from VSTHost’s web site.

Tests

A lot of intensive tests (and bug detections) have been done by Christian Boileau and friends from the
Vintage Sound Forum.

All above contributions have been done voluntarily and unpaid — and I can imagine the effort that’s
gone into them.
Thank you very much for this!

Information required/requested by licensing

The Windows 98 version of VSTHost uses jpeglib v9 to load JPEG images, so it is based in part on
the work of the Independent JPEG Group; it also uses libpng and zlib to load .PNG images.

Copyright Information

VSTHost © Hermann Seib, 2002-2021. All rights reserved.

V=D
(PN

«D—

VST and ASIO are trademarks of Steinberg Media Technologies GmbH.

= 28
et COMPATIBLE

MODUL :
ASIO is a registered trademark of

ARCHITECTURE Steinberg Media Technologies GmbH

All other product names and any trademarks mentioned are used for identification purposes only and
are copyrights of their respective holders.

https://www.hermannseib.com/english/vsthost.htm
http://zlib.net/
http://www.libpng.org/
http://www.ijg.org/
http://vintage-sounds.freeforums.net/
http://www.artvera-music.com/
http://www.vigierguitars.com/
mailto:office@hermannseib.com
https://www.hermannseib.com/programs/beta
https://www.hermannseib.com/vsthost.htm
https://www.hermannseib.com/vsthost.htm
https://www.hermannseib.com/vsthost.htm
https://www.hermannseib.com/english/vsthost.htm
https://www.hermannseib.com/english/vsthost.htm

Table of Contents

IIEOAUCTION. ¢+ttt et ettt e et e bt et eat e es e e e bt e bt e bt enteeaeeeseeaneenbeeeenneeesanaeenn 8
WAL IS VST 7.ttt b ettt et ettt esh e e e bt et e et et e e mbeeesabeeesaneeas 8
AT B T (USSR 8
More Information on VST, ASIO and PIUGINS........cc.ceiieiiiiiiiiiiiii ettt 8
WAL IS VSTHOSE? ...ttt ettt st sb ettt et sbte st eeeabe s 9

EVOIULION. ...t ettt e et e ettt e e et e e e eataeeeearaeeetseeeetaeaeeseennnssssaeeeeeas 9
WRAE AOCS T8 COSE?.. ittt ettt ettt ettt e et e et et e e st e et e e st e et eneeemseeseeesee st enseensesneeeneennneas 9

B3] X) OSSR 10
REQUITEIMEILS.cueeiiieiit ettt ettt ettt ettt et e et e et e e sateesabeesabeeeaseebeeenseeenbeesnseeeennnnees 10
PACKAZES. ..ottt ettt ettt bt e bt e e bt e st e e sat e e nnte e e e eanbaeeeas 10

VSHNOSEXEO.ZIP . .1 eeeveesiieeiiieiteeteeette ettt e bt e tteetaeesseessseessbeessseessseessseassaeasseesssaensseessseesseansseeenssssses 10
VSENOSEXOA.ZIP eenveeeereeereeireeteestteetteesete e taeestaeessaessseessseesssaessseessseassaeanseessseessseessseensseansseeensnssees 10
AVSTNOSTXBO.ZIP. et eeeitie ettt ettt ettt e et e e ettt e e ettt e e e tbeeeestbeeeesbseeaesaeeasssaeesssseeasssaaeseeesnnnsens 11
AVSTNOSTXOA. ZIP . vee e et e eiiee ettt ettt e et e e e te e e etbeeestteee e sbaeeessbeeeessseesssaeessssaeesssseeesssaaessessnssens 11
VSENOSTWOIE. ZIP. 1 vt eeeieeiieeiie et etee sttt et et et e s bee st e e ssbeessseessaeessaeensaeenseesnseessseensseanssaeeessnnsees 11
AT 0T b1 A | o TSRS 11
AT L0 0 (O T 3721 o RSP UUPPRN 12
Additional USETUL PACKAZES. .. ccviiiiiiiiiiiiiiieiie ettt rte ettt et e b e stb e e stbeetbeasbaeesbaeessaessbeeeeessnees 12
AEntion UPGTAETS!....c..ooiuiiiiiiiiiieie ettt et ettt sttt e e e 12
(01030) T4 1121 2 o) o TSSO 13
AUAIO CONTIGUIALION. .. .ecuviiiiieiiieiiierieeete et et e eteeeb e e st e estaeetreesbaeesseesssaessseessseessseasssessseeesssnses 13
ASIO COntrol PANEL.........ooiiiiiiiiiiiieee ettt ettt ettt ne e e as 15
ASTO Channel SELECTION.coiuuiiiiiieiie ettt ettt ettt e et e et e et esabe e e e eanees 15
MIDI CONTIGUIALION.viieiiiiieeiiieeciteeeeite e et e e e iteeeettee e ebeeeeabeeeesaeeesssaeeessseeesssseeessssaeesssaeaeeenns 16
MIDI INPUL DEVICES. .. .eeievieeeiieiiieiiiesieesiteeieeettesbeesseestreesaeaseessseessseesssaessseessseessssesseeessnnssns 16
MIDI OULPUL DEVICES. ... eveenerieiieeiieeiieeiieste et ettt etresteesteessseessseessreessaeaseesnssaeesesssaeesssnssees 17
IMIDT THIUL .ttt ettt ettt e et et e e bt enteeneessteeseesaeeseenseeenseeeanseeeennes 18
MIDI CLOCK OULPUL.....eviieeiiieesiiieeeiie e eeiee et e e ettt e e beeestaeeessbaeeseseeessseeessssaessssaeesssseeesssseesnnes 19
RemOte COntrOl POTt.......couiiiiiiieiieieee ettt 19
JOYSHCK CONFIGUIALION.eotiiiiiiiiieiie sttt ettt sttt ettt e 21
JOYSHICK 72 XY Zuvi ettt ettt et e et e et e e s sbeesabeestbeesaseestaeestbeenbaeassaeeessnnses 21
JOYSHICK 72 RUV .ttt ettt et et e st e s tb e e b e e taeestaeessaesnseessneesennes 23
JOYSHICK 72 POV ...ttt et ettt s e et sae e et e e et ee e e e neeeas 23
JOYSHICK 72 BULLONS 711-F ..ottt ettt ettt nnee s 24
MIDI OULPUL DEVICES.vvieeiieiieiiieeiiesttesreesteestre e tteeteessbeeseseessseessseessseasssesssseeessssssseeesssssees 25
Other Configuration TaSKS.........cccuveciieiiiieiiieriiesteeieeeree st esre et eetaeebeessbaessseessseessneesaeensaesnseens 25

DIEINSTALLATION. ...ttt ettt ettt et et e s bt e e bt e et e e e b e eabeesateenab e e ate e aeeenneas 25

(00153 215 [0 s WU USSP 26
Command 1iNE PATAMELETS.eeicvierreerieerreerteereeesieeebeesreesseeseaeessreesreasseeasseessseesseessssssseeesssnssns 26

N 4L) S PR UR SRR 26
MUIIPTOCESSOT PIOVISIONS. ...eeeerrreeerireeereeeetreeesreeeessseeeasseesasseeesssseeassseessssseessssssesesasesssssssssssssseeees 28
TeChNICAl EXPlANAION.ccvieiiiieiiieiieeieeeree e e ereestre et e ebeessbeesabeestbeestreeteeasseessseessseessseessssrseeens 28
Thread Start POINES.ooiiiiiiiiii ettt et e e e e e s e e e e e e e e e e e e enaasasaeeeeas 28
IMAIN WINAOW......eiiiiiiiiiiiit ettt ettt et e e ettt eeste e e e ettt e e etseeesatbeeesssseeansseeeasseeesssseeenssaaeeesannnns 30
MBI EITI@S. ...ttt ettt ettt et et et ee e e st e e st e bt e teenbeeenteeenneeeanneeenns 30
LS (LY (<3 L OSSR 31
USE BaNK. .ot ettt et ettt e et e e e et te e e e eanrees 31

Set Data Path.......coouiiiiiiee e et e e e s 32
NEW PLUGIN. ..ottt ettt e e et eetaessseesnbeessseessseessaenssaeeennnens 33

23 u e g VSRRSO 35

SHEIL PIUGINS. .. .ceiiiiiiiiie ettt ettt e e e e e ta e e e tbeeeesebeeessntssasaeaaaaeeeessnnnens 36

PIUZIN AULO-COMNNECT.......iiiiiiiiieiiiieeeiieeeeieeeeite e ertteeeereeeetaeeessbeeessbeeeesseeessssesessseeeeaessssansnnes 36

Set PIUGIN Path.........ooiiiiii ettt e et e e e nnraeeenn 36

RESCAN PIUGINS.....cciiiiiieiiie ettt ettt ettt e e estaeesbaeesssbaeeeesnsssaeseensnsens 37

Fast ReSCan PIUGINS........c.ooociiiiiieiiieie ettt sttt ae et e et e ensaeeeeennnees 37
LYot TR0 s B o R 37
Force Bridged RESCAN...........oiiiiiiiiiiiieciee ettt ettt e e e ree e etbe e e entree e e e ennnnns 37
USe PIUgIn File NAMES.ccviiiiiiiieeiie ettt ettt ettt ste ettt e et eente e e e entnaaeesennnees 37
Categorize PIUGINS. ...c..oiiiiiiiii ettt 37
PIUGINS. ..ttt ettt e et e e b e e st e e e tb e e tbeestaeesbaeeabeesrbeetbeetbeetaeensaeentrreeas 38
BUIItin PTUGINS....ccviiiiiieiie ettt e et e e taeessaessbaessseessbaessseessaesesnnnnes 38
AUAIO PASSTRIUL ..ottt e e et e e e e e e e e ea e eeeeees 38
DAY ...ttt et ettt et et sat e e bt e ettt e e e e anntaeeas 39
LeVel t0 PATAMELET........uvvviiiiiiiiiiec et ee e e e et e e e e e et aeeeeeeeaaaeeeeeeenes 39
IMIA/SIAE 1O STEICO....eeeeieeeeiiiee e et ee e e e ee e e e e et e e e e e eearaeeeeeeeraaaeeeeseennraeennnes 39
IMIDI MOGIEY ...ttt ettt et e e e s et e e tbeeetaeeeteeeteeenbeeeareesennes 40
IMIDI PASSTIIU.....coiiiiiiiiieeeee et e e e e e e e e e e e e e e e e et aaaeeeeeeeaannnees 40
Parameter PaSSTIIU.........oooiiiiiiiiiii et e e e e e e eaaaaaaas 41
REVETD.....ceeeeeeeeeeeeee e e e e et e e e e e e e e e 41
SEETE0 10 MIA/SIAC. ...ttt e e e e e e e e e e e e e aareeeeeeanen 41
18163030 SRR 41
BRI ettt et e aaaaaaaaaas 41
o Lo DAY, 1311 OO PUR PP 42
1T (o) R 42
CONTIGUIC.tieiiieiie ettt ettt e et e st et e e e bt e estaeesseessbeessseesssaessseessseassaeesesssseeessnsssseeesssssees 42
IMIDI SEELINES. ...veeeteeieeetie ettt ettt ettt ettt et e et e st e st e esateesmbeesaeeebteenbeeeabeeeabeeeenneees 44

J\Y 10 D) Bl o ¢ 4 11 1<) SRRt 50
Parameter -> MIDI..........ooooiiiiccceee ettt e e e e 55
POIMIANCIL. . .eeeieiieeci et e e e e e e e e e e e e eeeaeaaaeaaaa i aataaaae 57
J QY 1o B 27 s PP 58
SAVE BANK ...ttt e e aaa e e e e e aaaaaaaaaaaa 58
SAVE BANK AS...oiiiiiiiieiiee et e et e e e e e ee—aaaeaaas 58
AULOSAVE BANK. ...ttt e e e e 58
L (e T T I 7 ' ST 58
2 0T] PRSPPIt 58
LY 01PNt 58
(0T 3 NN 1< R 59
L 81 Te] s 1 s 61
2514 0101 20 €1 I PP PRURRRRRNE 61
VSTXML Format EXEENSION.cccoueeiiiiiiiiieeiiieeeeeeeeeeee ettt e ee e e e e e e e e e e e e eeaaaes 62
A 11 7 ' Lol RRPTRRRRR 63
Ottt et e e e et e e e —— e e e e ee i ———— e e e e e ————aaeaanaaaaaans 63
Pro@ram NAIME.coooiiiiiiie ettt et e e ettt e e sttt eesabeeesanbeee e e e eeaanes 63
o T T B o0 (0 3 3 1 O PPRRUPRRROt 63
SAVE PIOGIAM AS......oiiiiiiiiiiiiee ettt ettt e ettt e et e e e ibe e e s b e e e sntaeessntaaaaaeeeeaennnnnnneeees 63
INEXE PIOGTAIN. ..ttt ettt e e et e e st e e s st e e eeabeeesareeeean 63
PrevioUs PrOZIAM......cc.uiiiiiiiii ettt ettt ettt e et e et e st e e snteenseeenees 63
EXPOTIt PrOZIAIMIS. ... tiiiiiiie ettt ettt et te ettt e et e e et e e st ae e nsaeessssaeesnseeasesessnnssnnns 63
PrOGrams MMMcoiiiiiiieiie ettt et e et e e et eeetteessaseeessseeeennsssanaeeeeaesessnnnnes 64
Performance IMEIIUL..........oooiiiiiiieeeeeee ettt eeeaaanaaas 64
) G T TR 64
SV .ttt ——————————ttaae e e e e e e e e e e e e e e e ———————————————————————————_ 65
SAVE Ao e e e e e e e e e e e ————————aaaaaaaaaaaaaaaaaaaa 65
DAL= < SO UPPPRRRR 65
PrOVIOUS. ..ottt e e e e e e e e e e e e ettt a e e e e e e e e e e e e e e 66
514 010 AU PRSP 66
5301 0 0] o OO TP PP PRSP 66
] [T 67
AULOSAVE. ...ttt e et e e et e e e e e e e e eeeeeeeeee e e e e e arranr e e e e e s 67

AUtosave PIugln BankKs..........cccieiiiiiiiiiiiiiiecie ettt et be e s e e e nnnnes 67

MULE O1 LOAM. ...ttt st sb ettt ettt 67
Reuse Wave/MIDI FAles.......coouiiiiiiiieeee ettt 67
ENGINEG MEINUL....eiiiiiiiiiiiie ettt ettt e e et e e e e taeeeeteeeestbeeesssbeeesssseeanssaaesesssssssssssseaaaaaeeenns 68
RUNL ¢ttt et ettt ettt sttt e st e e e e abeeee s 68
] 21 o U PRP PP 68
CONTIGUIEC......eeivieiie ettt et e et e b et e e stee ettt e e tbeesebeesabeestbeessseesseeasseessseasseassseassaeanseesssnaeeens 68
INPUL ASSIZNcuviiiiiieiiieeree st ettt eteetteeteessreessbeeesbeestbeeeseesteeessaeessaeasseesssaessseessssssseeessnsssees 68
OULPUL ASSIZIL.eentieitieeiiee et ettt ettt et e et e etee e bt e sabeesateesaeeeasee e seeenseesnseeenbeesnseesaseenneeenneeensees 69

o S Te) 43 1< USRS 70

N 01!« IO PSR PRTUPPPRRNt 70
OIS ettt e h bt ettt et h e h e bt et ettt eh e e bt e teeeennee 71
ATAIO TR ¢ttt et ettt et e et e st e e sae e e e e e eabbteeeeaneeeeas 72
SOTE ClIPPING.eeiittiiieiiieeeiee ettt ettt e et e e ettt e e sttt e e essbteeertbeeesstseeeasssaeesssseeanssssaaaaaaeesssssssssssseeees 72
BPIM .ttt b ettt ettt bt e ettt e et e e eneeas 72
L0ad BPM....cieee ettt ettt et e e 73
RECOTARTttt ettt ettt e sat e st ettt e e s ettt e e e e nanbeas 73
A 10 INPUL. .ttt ettt e e ettt e e st ee e ssbeeeeebeeeessaee e nsaeeessaeeensseeeansaeeennnnnes 73
F N L10) (<) 02) SO PUPPPPRRRN 74
AULOTEPEAt WINAING....eeiiieiiieiie ettt ettt e ettt e st e st e e s bt e ebeeebeesabeesateesnseesnseennees 74
PLAYET SYNC..tiiiiiiiiiie ettt ettt et e et et e et e e e e esbeessbeessbeessbeessaeessseessaeesseeensaesssaeeeansnres 74
Lo e o S (USSP 74
CONTIGUIE RECOTARTeeiitieeiiieiiiet ettt ettt ettt et e et e e e ettt e e e enneeee s 75
Pre-Fader RECOTAING.......cccviiiiiiiiiciiie ettt ettt e et e e st e e e sabaeeeareaeeeeeennnnnns 76
IMIDI PLAYET....cctviiiiieiieeieeeiee st et e st ettt e teesbee st eessbeessbeesaeessaeansaeanseesssaessseensseansseenseeessnssnes 76
F N L10) (<) o2 1 S PP PUPPPRRN 76
PIAYCT FILe. . uiiiiiiiie ettt ettt e et e e et e e et e e e stbee e snbb e e e sbaeeetbaeeenraaeenenes 76
Configure MIDI PLayer........ccccuiiiiiiiiiiiieeeiiee ettt stee et eeivte e et ee e sateeeereeesssaeesssseeennnnssssnees 77
USE ENGINE™S BPM......iiiiiiiiiii ettt ettt ettt et e et e e st e e e e ennsnaeeeennnnes 77
Set ENINe’s BPM......coouiiiiiieiiee ettt ettt 77
PLAYET SYNC..tiiiitiiiiie ittt ettt ev e e tb e e et e e b e e bt e erbaesebeessseessseassseessaeessaeesseesssaeseassnsens 77
ML PANIC...c.eee ettt ettt et et at e st et e e bt et e e st e et eeeneeeeennes 77
SENA SYSEX FIle.....eiiiiieiie ettt ettt et et e et et e st eenteeeeeas 77
DIEVICES MBI ...ttt ettt ettt ettt et e et e et e s et e e sate e bt e eabeeebeesnteesnteeeeanneeeas 77
Y T (S5 113 PSPPSR 78
F N D1 0 2 LA 78
LiNear KNODS......oouuiiiiiiee e ettt et ettt ettt e e et e e e 78
0 0) LT OO P U PP PRI 78
RECOTART BTeiuiiiiiiieieee ettt sttt ettt et et e e 80
KEYDOATA BAT........uiiiiiiiiieii ettt et sttt et ettt e s nteeenreennnees 80
Configure Keyboard Bar...........ccuiiiciiiiiiiie ettt e e e e e e e e e etveeessraeesenaeees 81
OCtaAVE INAICALOTS. ...ttt ettt ettt et et e e nee e eesse e et enseeneeeneeeneennee 81

| G5 1 o 1<) SRS UPRTO 81
Monophonic Keyboard............ociiiiiiiiiiiiieie et 81

(0] E: 1111 1<) SRS 82
VRLOCTEY . ..vveeetieeiiieciteesie ettt e et e ettt e st e e s tb e et e es bt e esbeessbeesebeessseassaeassaeansaesssaessseessseessseeenasssses 82
Send AFEEITOUCK.eiiiiiiie ettt et 82
Send Channel PrESSUIE.........coouiiiiiiiiiiiiie ettt ettt ettt e e e eabeeeeeeaes 82
52 L RSO PPPPRR 82
Capture KEYDOAId........cocviiiiieiiiecie ettt ettt e e sttt e e taeessaesnseeennraeee s 83
MIDI PIAYET BAT......cciiciiiiiiiiie ettt e ettt e et e e e tbe e e s tbeeessbaeeessbaaesnsaaaaaaeeesssnsssnnns 83
STALUS BAT ...ttt et ettt sttt et e be e e bt e b s 84
Status Bar LeVEl IMETET........couiiiiriieiieieeieee ettt sttt ettt st e e e e 84
Peak Value Level MELETS.cccuviiiiiiiiieiiie ettt ettt ettt e e eab e e e saneeaeeeeeaeanes 84
MiINIMiZe t0 SYSEEM TTAY ...eccuviiiiiiiiiieiiieeree et eteesteestreetee et e str e e sebeestbeestbeessbeessaeesseessseessseenens 84
N G & USSP 84

IMLASERT. ...ttt ettt ettt ettt et e e e e h e e bt e b et et s bt saeeenbt e e baeee s 85

N] 2 S USSR URR PP 85

) 15 o T (3L OSSP PPRPRR 87
ADOUL VSTHOSE. ...ttt sttt ettt et e e e e s 87
IMANUAL ...ttt ettt e ettt e e et e et e e e e abe e e eab e e e ataeeeeabeeeetbeeeetaeeeaannanes 87
DIONALE. ...ttt sttt e h e e h e ettt e e e bbbt e e e e abeeee s 87
Appendix A: Things you should NEeVET NEE.........cceeiiiiiiiiriieie ettt eeeereesreesraeeeeenes 88
Exception Handling..........coouiiiiiiiiieie ettt ettt sttt e sate e st e e e e e 88
Additional .ini Files and SECHIONS.......c.ciiiuiiiiiiiiieeiee ettt et e e e et e e e 88
JNT FILE LAYOUL...uviiiiiieiie ettt ettt et e et eesteesssaessbaessbaessseessaeassssseeeessssssaeensnsns 88
IMaAIN 0T FILE ..ttt ettt et sttt ettt et e e naeee e 89
[SEEIIIES .o vteeeetiee ettt e ettt ettt et e ettt e ettt e e e bt e e s ataeeessbaeeestaeeeessbaeeasbaaeesbaeeetbaaaaaeeeeeaannarraaneeeens 89
ASTOOUPULREAAYT0.....eeeeiiiieeiiie ettt ettt e ettt e e et e e s tb e e e etbaeeesebeeesstsaeeeeaaeeesssssnnns 89
AsioPanel drivername=program PAth................ccocccueevueeeieeeieeiiesceesieesie e esiee e seseessee e 89
AsioPanel32 drivername=program PAth................ccocccueeiueeieeeeieeiieeieesieese e ssiee e ssee e 89
AsioPanel64 drivername=program PAth..............cccccecoueeeeieeeeeieeeseieeesieeeeveeeserrrreeaaaaeeeeens 89
ASIOSUPPOItSTIMECOAET1 ...ttt e te e e eeebe e s ebeesabeessbeeseseennnes 89
ASIOSUPPOTtS TIMEINTOTT ..ot 89
AULOMIAITO.eveiiiiie ettt e ettt e e et e ettt eeesabeeeeatbeeesaraeeesabeeeaabeeeaaeeeeaaannenes 89
N4 g o USSP 89
BankSaveVerSIoNT2........cociiiiiieie ettt ettt ettt ettt et e e 90
BTICKIMUITES ..ot ettt sttt e bt be e e bt e et e e saeeennneas 90
Bridge32=<app start directory + AppName + “Bridge32.6Xe”>........cccceevvireirreeencrieeeeiiveeeennn. 90
Bridge64=<app start directory + AppName + “Bridge64.eXe”>......c.cccccveverierveerveenienrieeeennens 90
Bridge32Trace=<app start directory + AppName + “Bridge32.eXe”>.......cccccvveevieniineeenieeene 90
Bridge64Trace=<app start directory + AppName + “Bridge64.exe”>.........ccovevevvrveeercnrrrrennnn. 90
DefReUSEWAVIMIAT]ciiiiiiiiiiit ettt sttt et e et ee e e 90
ExceptionsFile=%DataPath%\EXCEePtONS.iNi........c.eeriuierireriieeiieeiieeieeeieesieeeeiieeeeeeraeee e 90
TAIEMISECSTS0......eeeeeetie ettt ettt ettt e et e et e e eaa e e e e aaeeeaaaeeeetseeesatreeenarasaaeeeas 90
KTV STEYST 1.ttt ettt et ettt e e e et e st e st et e eneeeneesneesseeeenneeeennes 91
LeVEIMSECSTS00.....c.eeeneee ettt ettt ettt et ettt ettt et ettt sne e et e a ettt e e enneee e 91
MaINBECONNSIZETS......ceiiiieiie ettt ettt e sttt e s e ettt et e e st e e e s enteeeeeeennses 91
MainBgLINKOTIS=5. ..ottt ettt ettt e e e ee e e 91
MaXCRANNEIST32.......eoiiiiieie ettt ettt ettt e e et et e et et et e sneeebee bt e s e e e 91
MenUBArBreak=30.........cccoriiiiiee ettt ettt 91
MenUBArSPIIECOISTS......oiiiiiie ettt et e et e e e treeestreeeesabaeeearbaeaaaaeeeeennnns 91
NOLEOTEVEITOXA0. ...ttt ettt ettt et e et e e eneeeateeseesseenseeseenseeenseeenns 91
NUMPTroCeSSOTS=pAYSICAL T PrOCESSOTSocvveevieeiiesiiieiieeeieeeiee st e steesteeieeeteesaeesseessnreeesenes 91
OPtRUNNINGSTATUST L ..o iiieiiieiie ettt et et e sttt e st e e taeeteeenseesnbeesnbeessseenseenneees 92
PEICIMISECSTT50. ...ttt et sttt et e b e ettt et et e e e 92
PluginMenuCatOrder=1,4.........c.ccovuiiiiieiieeiieeree et e et e streestreetteeteesbeesssaesbeessseassseesseasseesnens 92
PluginsPerBridge=1000...........c.ccectiriiariterie ettt steestteesiee et eeeteesateesreesnaeesssaeeesennnees 92
ReloadWaveDelay=1000...........ccccuteiiiiiiiiiieeit ettt ettt sttt ettt e e beeebee et eeeeenneee 92
ShoWPArMINAEX=0.......ccceiiieitieitiei ettt ettt et e ete et e et e et e eeneeens 92
SYSEXBUTSIZET250........0eeciieiiieit sttt sttt e et e estaeesbaessbaessbaessbeesssaessseeeessnsaeeens 92
SYSEXBUTWAITEO0.........eiiiieiieeiie ettt ettt et ettt e st et s e e et e e e e enbeeeens 92
TraceBase=0X60000000..........ccocueitmmiiiiitee ittt ettt e st e ettt e e eeeeeesenaebbeeeeee 93
TraceMask=0XTFFFFFFFcooiiiiie ettt 93
TTACEBIEAKTO.ccutiiiiiiiiiie e ettt ettt ettt ettt e e e eas 94
TTACEKEEPTO. ...eeeiiiiee ettt ettt e e ettt e e ettt e e estbeeesataeestbeeeesbbeeessbaeaaeeeeeennnnnsraraaeeans 94
TranslateINOtEOTT=1. ..o ettt e e e s 94
USBIE XTI ..ttt ettt et a e bt e bt ettt et s bt bt e bt ettt e 94
USCTEXITB 2= .ttt e e et e e ettt e e e tb e e e eataeeeeabeeeeatseeesataeeeeabaeeennseeeannnes 94
USECIEXIEOAT ...ttt ettt ettt ettt e et e bt e et et e eateseeeestease e st enteenseeneeeneesneeennes 94
VI STXML EXEET .ttt ettt et ettt ettt et et esseess e e bt eeeeneeesnneeeennee 94

VUFQAEMSECSTLT00..... ettt e e e e e et e e e e e e e e e eeeeeeeeeeeeesasaaaeeeas 95

VUMaXMSECSTI000.....cccueeiiiiiiieiiiteteeiee ettt ettt sttt et e e e e e s 95
WSEMINTATOA304.....ceeeeeee ettt ettt ettt et e et e e et esae e s et e bt enseenteeneesseenseenseenes 95
WSEtMaX=41943040.......e ettt ettt ettt et et e et e st et e et enteeneesseeseeeneeeennee 95

[N L0 2731) (<) PP SRURUPRR 95
[DSOUNAIZNOTE]...euteeeitieeiteeiieeeit ettt ettt et e et e st e sttt e sttt e ate e bt eenteesnseesaseesaseenseeeseeesseeeesanssneeesanns 95
[IMIMEEIIIOTE ... et ivvieeiiieeeteeeiieesit et e et e et eeebeesebeestbeesebeestseesbaeessaeasseasssaessseassseassseassseesseessseessseenssns 95
[IMIDIEZNOTE].. . eeuvteeurieeereesteesiteestteetteeteeesseesabeessseessseessseassseasssasssaessseesssaessseessseasssessseeesssssseeeensses 95
[IMIDIINAZIIOTE]. ..t euetteiee ettt enteeetee et e et e sttt et e et eetteeabeeembeesateessteeneeensaeenseesnseesnseesnseesnseensneeesanne 95
[IMIDIOULIZNOTE | eeite ettt ettt ettt ettt ettt et e et e et e et e eabeesateesbeeebeeebeeenteesnbeesnseeeeeeansbneeesanns 95
[ASTOFOrCEPIEeITed]......uvieeieeieieieee et ettt e e e e e e e e aaaeeeees 96

R qeTe) o) 1) T30 14 PR 96
15 1074 £ T R PR PRSP PPPPPPPP 96
Appendix B: OSC IMplementation...........cc.eieeeuiiieiiiieeeiiieesieeesiieeesteeeesveeeestveeessseeessseesssseeesssssssssnes 97
WAL IS OSC?.cc ettt b ettt e at e bt e s bt e bt et e et e sbtesbe e bt e e abeeenteeeneee 97
VISTHOSt AQATESS SPACE.eeietieeiieeiieeieeete et eriteette s tte sttt e sttt essteesstessseesnseesaseessseessaeesaeenseesnseesnses 97
<] 14§ o (<P PUPPRN 97
/@NZINE/DPIM [DPIM]..eiviiiiiiiiiiieiiiee ettt e e e treebeeerbeesabeessbeestseetseessseesseesssaensns 98
/@NGINE/CRANMELS.c.eiiiiiieiie ettt ettt e et e et e et e s bee st eeeeeennteeeeeennnneas 98
/engine/Channels/in [INPULS |.......eerieerieeiie ettt ettt ettt te et e e bt e ebee e e e e e ennees 98
/engine/Channels/Out [OULPULS |.......veriieriieeiieeiie et et e sttt e eteeebee b e e sebeesebeestbeeeseeesennaeesesennes 98
J@NZINE/TUN [OMN]1uviiiitieiiiestiesitesie e tee et e ebeesbeesreestbeesaeesseesssaesssaessseessseessseessssaeessssssseeesnnssses 98
/engine/signature [NUM dENOM|......ccutiiiiiiiietiieie ettt ettt e et e et e e e ettt e e e e sneeeeeeenees 98
IPEITOTINANCE. ... eeeiviieeiiieeeiiee e et ee ettt e et e e et eeeetaee e saeeeeeseeeessseeeasssaeeasseeeansseeessssaeeassseessseaeeensnns 98
/PErfOrMAanCE/MUIM [TIUIM .. .cccvieriireiieerieetee st e steesereetaeeteessseessseessseessseessseessseasseeeessssseeessnnssns 98

0] 1074 1 3 USSR 98
0] T Y SRS RRR 98

o L8 e U077 oY 11 4 USRS RPPRRROt 99
/PIUgIN/I/AISPIAYNAIMNE.eeevieeiiiecieeciie ettt et et e eteesteessbeesabeesebeestaeensaeenseesnnene 99
/PIUGIN/ T/ MUMPATAIMIELETS.eeeeeeeeeieeeiieeeieeetteeieeeteeeteesateestbeesseeesteeesseeenseesnbeesnseeeeeanssneeesennsees 99
/PIUGIN/T/MUMPIOZIAINS. ...euvvieueveeeiieeeieeeereesreeetreestreeseseesteeesseessseessseessseessseassssesssessseesssessssesssnses 99
/PIUGIN/T/DYPASS [ON]..veiiurieeerieiirieiiiesieeiteeteeeteesbeesbeestveestbeestbeessaessseesssaessseesssaeessssssaeeesssesees 99
/PIUGIN/T/TULE [ON]...eeiniiieiit ettt ettt ettt e sttt e et eebeeebeesateeeenebaeeeesnneee 99
SPIUGIN/ T/ PATAIMELET ...ttt et ettt e e ettt e b e et e sabeesateesmbeesneeeabeeenbeeenbeeeenneee 99
/plugin/n/parameter/p [VAIUC]........cveiciieriieeieesieeie ettt ettt s eesereessbeeeneenenes 99
/plUgIN/N/PAramMELET/P/MAIMNE.ccuvieeiieriieeie ettt eteeieeeteeebeesebe e ebe e taeestaeesseesnseessseeessssaeeessnsssns 99
/plugin/n/parameter/p/1abel...........ccuiiiiiiiiiiiii e a e e 99
/plugin/n/parameter/p/diSPIAY........cccuvieiciiiiiiiie ettt et e e e aaaaaeeeeas 99
/plUgIN/N/PrOGram [CUITENE]eevuvieriireiieeieeeteesteesteesteeseeeeeeeebeesseessseessseesnnsaeesesnssneeessnnsens 99
/PIUGIN/ T/ PTOGTAIMI/P......eeevieit ettt ettt ettt et e et esateesebeesabeessaeenteeenseesnseesnsaeesssnssneeesanns 100
/plugin/n/Program/P/MAMIC.veeeeriieeiieeeeciieeeeieeeerreeesteeeesteeeeereeesstbeesssseeeessaeesssseessssseens 100

Introduction

What is VST?

“Okay, what are VST Pluglns?”, I hear some of you say... well, let’s do a little history research. If you
already know what it means, just skip to the next section.

The term VST was coined by Steinberg some years ago as an abbreviation for ,,Virtual Studio
Technology®. It is an interface definition that allows communication between a VST Host (originally,
of course, Steinberg’s Cubase sequencer, but many more programs have adopted the interface by now)
and virtual effects and instruments. These effects and instruments are implemented as separate units
and can be “plugged into” the VST Host wherever they’re needed, thus they are commonly called
“Pluglns”. The VST Host sends audio data streams to the Pluglns in a special format and adds their
output to its own audio processing.

Since V2 of the VST definition, there are two kinds of VST Pluglns: effects and instruments. The
distinction is that effects process an incoming audio stream, while instruments create their own — they
are triggered by MIDI events, just like an external synthesizer would be.

With V3 of the VST definition, Steinberg created a completely new interface which is incompatible to
V1 and V2. Since V1.46, VSTHost can load VST3 Pluglns — there are a few, but since they're so
radically different internally, Plugln writers have been very reluctant to adopt it so far — but it doesn't
yet fully explore the VST3 capabilities. There's a bit of a chicken-and-egg problem here; I can only
add features if I got Pluglns to test them with. Fine, but — there are nearly no freeware VST3 Pluglns
available, only some commercial ones, which are primarily targeted at the Cubase / Nuendo
environments. I can't afford to buy them just for this purpose, so I'm a bit stuck...

Then, there's yet another Plugln type: VST modules. The “VST Module Architecture” describes a kind
of sidestep between VST 2 and VST 3 — these Pluglns are architecturally related to VST 3, but offer
only MIDI capabilities. I don't think that there are many of these. Since V1.46, VSTHost supports a
relatively big subset of the VST Module Architecture capabilities, but I've got the same problem here
as with VST 3 — no test material, no further development...

Steinberg’s SDKs provide a VST implementation for quite some operating systems; VSTHost,
however, only works on Windows.

VSTHost can use the old-fashioned Windows Multimedia Extensions (MME) and DirectSound (DS)
interfaces to exchange audio data with the sound card, or it can use an ASIO driver, if available.

What is ASIO?

“Okay, but what is ASIO?”, I hear some of you say... probably the ones who didn’t know “VST”
© ... well, let’s do a little history research again. If you already know what it means, just skip to the
next section.

The term ASIO, again, was coined by Steinberg some years ago as an abbreviation for “Audio
Streaming Input Output”. It defines a rather fast communication method between the audio hardware
and an audio-processing program, such as a VST Host. An ASIO driver, if available, normally
performs better than a MME driver, since it has considerably less overhead, allows multi-channel
communication and so on.

More Information on VST, ASIO and Plugins

The SDKs for Steinberg’s VST and ASIO Software Development Kits can be found on the Internet.
When I last checked, they could be found at http://www.steinberg.net/en/company/developer.html .

http://www.steinberg.net/en/company/developer.html

An exhaustive, searchable list of Plugln descriptions can be found at http://www.kvraudio.com .

What is VSTHost?

VSTHost is a program to run VST Pluglns. In contrast to the big programs (Cubase, Nuendo, Logic
come to mind), it is not a full-fledged giant sequencer package that needs many seconds just to come
up to a point where it can say “Hello”. It’s relatively small, and hopefully will stay so, and it only runs
Pluglns. No sequencing (well, it can play back simple audio and MIDI files), no elaborate recording
facilities (although it does have a simple multitrack recorder built in). To make up for that, you can
define very complex Plugln setups and switch between them easily.

Evolution

The main goal for VSTHost, in the beginning, was simply to provide a little test bed for VST Plugln
development, and to understand how VST works “under the hood”. By now, this goal has been
reached; VSTHost can load nearly every Plugln (it even occurs in the “list of compatible hosts” for
quite some Pluglns, which I find rather flattering). If you want to perform some in-depth debugging,
the full source code for a reduced version of VSTHost is available for download on my web site (see
page 2 for details).

VSTHost is still evolving, however; the goal for now is to turn it into a valuable tool for performing
artists in a live environment. Sort of a “super-synthesizer”, if you want.

What does it cost?

Aaaah, this is the point where money comes into play; I was never good at that ©... basically, it’s
free. The download version is not restricted in any way, and only show a nag screen once. Why
encourage pirates to tinker with it?

In theory, it’s “donationware”, which means that you can download and use it; if you find it useful, it
would be nice to register by sending a little bit of money to my PayPal account. There’s a “Donate”
button on VSTHost’s web site for that. If that doesn’t work, sending to my PayPal account using
office@hermannseib.com as receiver does the trick. I don’t insist on it, but it would be nice if you
honored the countless hours I’ve invested into making this thing usable by donating a bit to the further
development of VSTHost.

mailto:office@hermannseib.com
http://www.kvraudio.com/

Installation

VSTHost is too simple (or too intelligently written? You decide ©) to need an elaborate installation
procedure. Simply copy the contents of the .zip file into a directory that suits you, maybe create a link
to it in your start menu or on the desktop, and that’s it.

In theory, this would make it possible to use VSTHost as “stickware” (i.e., software directly running
from an USB stick); however, since it relies heavily on outside resources (audio cards, Pluglns, ...),
this can only be reached by restricting yourself to a very basic setup.

Requirements

To run VSTHost, you need at least the following:

e acontemporary computer with a Pentium II (or better) or Athlon processor with least
500MHz; the more, the better (actually, it does even work with an AMD K6-II at 300MHz,
but only with very simple Pluglns, so this is not really recommendable);

e a fair amount of RAM; while 128MB should be sufficient for a minimalistic setup, 256MB are
much better; for larger setups, 512MB or more are recommended; the sky is the limit ©

e asound card; while VSTHost works even with the measliest AC97 on-board chips, a modern
card that can handle 24bit audio is recommended;

e Windows operating system; Windows 98, ME, NT4, 2000, XP, Vista, 7, 8, and 10 are
supported.

It also runs in an up-to-date WINE environment on x86-based Mac OS X or Linux, like the
one used by the MediaStation (see http://www.lionstracs.com for that); while it does work, it
is not a supported configuration..

Packages

One of the consequences of not using an installer is that there's more than one VSTHost package. In
fact, at the time of writing, there are seven of them. Each has its own raison d'étre, as detailed below.

The normal packages are:

vsthostx86.zip

This package contains a version of the main program that
e uses 32bit code, so it can run on any Windows starting with Windows 2000, on 32bit and
64bit Windows systems
* uses 32bit wide audio data

vsthostx64.zip

This package contains a version of the main program that
* uses 64bit code, so it can only run on a 64-bit Windows starting with Windows XP 64bit
* uses 32bit wide audio data

If you're running it on a 64bit system, it's a bit hard to decide whether using the x86 or the x64 version
suits your purposes better. The main point to consider is this: which Pluglns are you mainly using? If
it's mainly 32bit Pluglns, you should use the 32bit host; if, on the other hand, most of your Pluglns are
64bit, you should use the 64bit host. Each of the two can handle Pluglns of the other kind (see
“Bridging” on page 35 for details), but that needs much more processing power and may introduce
unwanted instabilities.

Slightly less normal variants are these:

10

http://web.archive.org/web/20090309000041/http://www.lionstracs.com/store/

dvsthostx86.zip

This package contains a version of the main program that
* uses 32bit code, so it can run on any Windows starting with Windows 2000, on 32bit and
64bit Windows systems
* uses 64bit wide audio data

dvsthostx64.zip

This package contains a version of the main program that
* uses 64bit code, so it can only run on a 64-bit Windows starting with Windows XP 64bit
* uses 64bit wide audio data

64bit audio data means that all internal audio paths in VSTHost are done in 64bit floating point.
Normally, this is completely irrelevant, since (a) most Pluglns only process audio data in 32bit and (b)
VSTHost doesn't do much with the data anyway. It just makes things slower, since twice as many data
have to be moved around. But if you happen to have lots of Pluglns that can process 64bit audio data
and want to go for the utmost sound fidelity, you can with these packages.

vsthostw98.zip

This package contains a version of the main program that
* uses 32bit code built with a rather old compiler, so it can run on any Windows starting with
Windows 98, on 32bit and 64bit Windows systems
* uses 32bit wide audio data
Note: this version doesn't contain any manifest data, so newer Windows versions, starting with Vista,
treat it (rightfully) as a legacy application, which can have unwanted side effects; it is not recommen-
ded to use this package on Windows Vista or newer.

Since V1.53, there's this separate package for Windows 98/ME, because I've switched the main
VSTHost development environment to Visual Studio 2008 — and programs generated with that won't
run on Windows 98/ME. The Win98 package is functionally nearly identical to the normal one, except
for slight UI differences and some “under the hood” goodies that come for free with VS2008 (like
Active Accessibility integration, for example).

The main difference is that the Win98 package doesn't contain the 64bit bridge program, since that's
impossible to use in Windows 98/ME anyway. The Win98 package does run in newer operating
systems, however — so, if you want to run it in a 64-bit Windows environment, you can simply copy
vsthostbridge64.exe from the normal version.

Another difference, if you're running this on Windows Vista or later versions, is that the Windows 98
version has no embedded UAC settings, so it's treated differently. This may help with older Pluglns
which use bad practices like storing files in the Windows system directories or in parts of the registry
which normal programs shouldn't touch.

I haven't tried whether WINE requires the Win98 version, too, but it's easy to find out — if so, the now
normal VSTHost refuses to start and requests you to “install a newer operating system”.

And then there are the “completely abnormal versions™:

tvsthostx86.zip

This package contains a version of the main program that
* uses 32bit code, so it can run on any Windows starting with Windows 2000, on 32bit and
64bit Windows systems
* uses 32bit wide audio data
* writes out a trace file detailing its activities

11

tvsthostx64.zip

This package contains a version of the main program that
* uses 64bit code, so it can only run on a 64-bit Windows starting with Windows XP 64bit
* uses 32bit wide audio data
e writes out a trace file detailing its activities

Both of these packages are only intended for debugging purposes. I can't easily jet around the globe
each time somebody has a peculiar problem that only comes up on his or her machine, or with a
commercial Plugln. In such a case, producing a set of trace files and sending them to me (.zipped, for
heaven's sake! These things are /uge!) can be a great help to fix the problem.

Attention: these packages also contain tracing bridge programs, so you shouldn't mix them with the
normal packages.

Additional useful packages

If your sound card came without an ASIO driver (obviously created with game players in mind instead
of musicians), you might try to use Michael Tippach’s ASIO4ALL driver, which can be found at,
surprise, surprise, http://www.asio4all.com — it can work wonders compared to the MME and DirectX
drivers that are normally provided with the sound cards.

That’s it — there isn’t more to it. Unless you used a very early VSTHost version; in this case...

Attention Upgraders!

Starting with V1.43, VSTHost doesn’t store its settings in the registry any more. Instead, it uses a
“Data” directory for storing information, such as performance banks, recordings, global initialization
files and the like. If you just downloaded and installed VSTHost for the first time, that’s no problem —
the distribution comes with a populated “Data” sub-directory, and VSTHost defaults to using the path
where it is installed, with an appended “\Data”, so everything just starts up nicely.

For long-term users, the situation isn’t so simple, since their settings are already stored in the registry.
In previous versions, VSTHost contained startup code that automatically corrected such things, but in
the meantime this means quite some code that isn’t normally needed, so I decided to move it into a
separate program. Starting with V1.43, the VSTHost package includes a little helper program called
vsthostregclean. Simply double-click on this in the Explorer, and it should transfer all your registry
settings into the corresponding files (and clean up the registry while doing so).

If you’re upgrading from a version >= V1.43, you should still execute vsthostregclean, as it also
corrects settings that are different from previous versions.

The Slave mode settings are a completely different subset in the registry, so if you previously used
VSTHost in Slave mode, you’ll have to append the command line parameter /slave to vsthostregclean.
The easiest way to do this, from my point of view, is to open a command prompt, CD to the VSTHost
installation directory, and issue the command, like

C:\Program Files\VSTHost>vsthostregclean /slave

Mouse junkies can right-click on vsthostregclean.exe, select “Create Link” (or whatever that’s called
in your local version of Windows) to create a link, then modify the link’s properties to include the
/slave parameter on the invoked program’s command line, save the new properties, and then double-
click on the link (and remove the link again, since this is a one-time operation).

If you’re also using the Open Source variant of VSTHost, vsthostregclean has the unfortunate side
effect of removing all the settings for this one, too; for such an environment, you can pass the
additional parameter /keep to vsthostregclean so that it doesn’t remove the Settings and Load sub-
keys from the registry after having copied them.

12

http://www.asio4all.com/

Then, there’s one more possible parameter — this deals with the fact that in previous versions VSTHost
used its own file name (normally “VSTHost”) as its start point in the registry. If you renamed
VSTHost (or created a hardlink for it), the key in the registry isn’t VSTHost, either. For such
situations, you can append the parameter /app=appname so that vsthostregclean uses appname instead
of “VSTHost” for its operation.

That’s it — there isn’t any more to it. Simply start VSTHost for the next task:

Configuration

When you start VSTHost for the first time, it comes up with a minimal configuration. A “deaf, dumb,
and blind kid”, as The Who would have called it. You’ll see a window like this (the exact look, of
course, is determined by your Windows setup):

|9 VSTHost 0: ** Init ** - 1: Engine Output B= X
fie Bugin Epgne Devices Wiew Window Hep
=it = ¥ TE (R OO E S % | wmm s jzoeem AN ME N =H| ¢
|« «me» 1 »wlO .- W A

-/- = &

Figure 1: Initial VSTHost window
Hmmm. Well. OK. So what does that mean...? Let’s start with the obvious first task:

Audio Configuration

When VSTHost comes up the first time, it doesn’t know anything about the computer’s configuration.
Being rather conservative in its views, it doesn’t preload any specific driver. In Windows systems,
there’s something called the Wave Mapper device. The user can predefine an audio device as the
default device — the thing that is used whenever Windows needs to issue a “Ping!” or “Bleep!” or
“Whoop!” to indicate certain conditions. VSTHost preloads this standard device as its Audio output
device, and that with a very large buffer size. This is probably the worst possible solution — but one
that’s practically guaranteed to work.

To set up a better configuration, we have to enter the Wave Device Settings dialog by choosing its
menu entry:

MIDL.
Joysticks.

Figure 2: Wave Device Settings menu entry

... which opens the following dialog:

13

[ColectWave Devices =

Input port: MME: Microsoft Soundmapper -

Dutput Fort MWE: Microsoft Soundmapper B

Sample Rate: | 44100 i

Buffer Size: 4410 samples (10 by's) iV
QK I Cancel

Figure 3: Wave Device Selection Dialog

Here, the wave devices used by VSTHost can be defined. The combo boxes contain the possible
devices. As you can see, the Wave Mapper is preselected (and loaded), with a large buffer size. At
44.1kHz, which VSTHost uses with MME devices, this means that it processes audio at a rate of 10
buffers per second. This buffer size should work even on the slowest computers, but it doesn’t allow
real-time operation. So, we’d better redefine that setup to the best possible for the computer at hand.

The devices listed in the combo boxes all have a prefix, either MME: for Windows Multimedia
Extensions drivers, or DSound: for DirectSound drivers (DirectSound5 at the moment — doesn’t work
well in Vista or 7. Be warned.), or ASIO: for ASIO drivers.

The Input port combo box shows all available input devices. This box will never contain ASIO
drivers; since ASIO drivers combine the operation of input and output drivers, they are only listed in
the Output Port combo box. Whenever an ASIO driver is selected in the Output Port box, the Input
Port box is grayed out to reflect the fact that ASIO doesn’t need a separate Input port.

The Output Port combo box shows all available output devices. If it should be empty, your computer
doesn’t have (or doesn’t think it has; Windows 98 sometimes works in mysterious ways ©) any sound
card. In this case, VSTHost can still be used to load and debug Pluglns, but you won’t hear anything,
which makes it a kind of useless intellectual exercise for most of us.

You should select the best possible combination for your computer; with Windows NT, there’s not
much choice, since there are not many ASIO drivers for NT floating around (read that as: zero).
ASIO4ALL doesn’t work, since NT4 doesn’t follow the WDM driver model, so your choice will
probably be rather limited. In general, you should always take the drivers that are closest to the
hardware; in audio processing applications, speed really counts, and avoidable overhead is bad. If an
ASIO driver is available for your sound card, take it; it will provide the best performance in most
cases... with a notable exception: if you have Cubase or Nuendo installed, they installed an ASIO
emulation driver called “ASIO Multimedia Driver”, which adds a layer above the Windows MME
driver. Avoid this ASIO driver whenever possible (it always is, since VSTHost can handle the MME
driver itself), it gives a horrible performance.

The Sample Rate combo box allows to select between various available sample rates, if the
configured output driver allows them; VSTHost tries its best to determine what the driver can do and
what not, but this doesn’t always work out — some drivers happily report that they can playback at
192kHz, although they can’t even do 88.2kHz. Also, most ASIO drivers rely on the ASIO Control
Panel to determine the sample rate. In these cases, the combo box will hold exactly one possible
value.

The Buffer Size combo box lets you select between some buffer sizes; these are carefully selected for
their property that their multiples exactly fit into one second at 44.1kHz. Now, that may be nice, but...
first of all, 44.1kHz isn’t mandatory for ASIO drivers, and some of these mandate other buffer sizes.
Therefore, apart from the predefined values, you can enter any (reasonable) buffer size you want into
this combo box.

Here’s how a sample configuration looks like (this PC uses a Terratec DMX 6fire 24/96 card):

14

[Select Wave Devices =

Input port:

QutputPort ASIO: ASIO for DMX Bfire 24/96 |
Sarmple Fate; | 44100 - |
Butfer Size: 3684 samples |

ok I Cancel |

Figure 4: Setup for Terratec DMX 6fire 24/96

Experiment with the buffer size; if it is too large, you’ll hear noticeable delays between the triggering
of a note and its actual appearance at the speakers. If it is too small, the overhead introduced by the
frequent buffer handling might become too much for your poor little computer; in that case, it starts to
skip processing some buffers since it doesn’t have enough fime for it. This results in an occasionally
audible crackling noise. In this case, increase the buffer size until it goes away.

Note: if you're switching from an MME or DirectSound driver to ASIO4All, take care. The ASIO4All
driver might try to open the device you just closed, and there are some drivers that don't like this —
they need a little time to pass before re-opening them works. So, in this case, it's better to select “* No
Wave *” for Input and Output Port, close the dialog, reopen it, and then select ASIO4All as output
driver. This should work with all audio drivers, even if they're poorly written.

Once you have configured an ASIO driver, the following two menu entries can be used:

ASIO Control Panel

Here, you can call up the selected ASIO Driver’s configuration panel. This varies greatly between the
various drivers and is not part of VSTHost. The VSTHost audio engine is stopped while the ASIO
Control Panel is open(ed — depending on the driver, this may or may not be a synchronous operation).

ASIO Channel Selection

Normally, VSTHost operates with as many channels as the Wave device drivers permit. If you only
need specific channels, however, you can use this to select a subset of the available stereo pairs to use.

Selecting the menu entry brings up the following dialog:

| ASI0 Sterec Pair Channel Selection %]
Inputs QOuiputs
. Load allinput paths] Load all output paths. [v] pFa
ASIO Input Channels ASIO Output Channels
[l CDIn Left + CD In Right [#] FrontLeft + Front Right
Line In Left + Line In Right RearLeft + Rear Right
Phono/Mic In Left + Phono/Mic In Right Center + LFE
Digital In Left + Digstal In Right Digital Qut Left + Digital Out Right

[Mixin Left + Mo: In Right

‘Aslg Device Nama: EWSBEMT Asio 0K Cancel J

Figure 5: ASIO Channel Selection Dialog

Checking the “Load all input / output paths” boxes sets the normal behavior of using all possible
channels. If unchecked, you can select any possible combination (deselecting all restores the default).
This can save quite a lot of precious CPU cycles.

OK, we’ve set up our Wave devices... so now what?

15

MIDI Configuration

If you’re only using VSTHost to load some VST Effects, you don’t need this step. Most effects don’t
rely on MIDI communication. VST Instruments, however, need MIDI data. While VSTHost has a
built-in keyboard bar (see “Keyboard Bar” on page 80 for details) that allows you to trigger MIDI
notes with the mouse, this can’t really be considered a good solution; an external keyboard (the one
with the black and white keys, not your computer’s ©) is far superior. To tell VSTHost how to find
this external keyboard, you have to define the MIDI devices it should use. So, open the MIDI Device
Configuration dialog by choosing its menu entry:

Devices.
MIDL..
Wave...
Joysticks...

Asio Control Fanel...
Asto Channel Selection...

Figure 6: MIDI Device Settings menu entry

... which opens the following dialog: \
| MIDI Parameters E’ﬂ

MIDI Input Devices | pMIDI Output Devices | MIOI Thiu | Remote Conbrol Port

Salect all used devices

Ini Fram MIDH Yoke:
In Fram MIDI Yoke: 2
In Fram MIDI Yoke: 3
In From MIDI Yoke: 4
Ini Fram MIDI Yoke: §
B
7
B

Ini Fram MIDH Yoke:
In Fram MID Yake:
In From MIDI Yoke:

E-DSP MIDI Port [DFO0]

Filter Setlings. [Transformations.,]

ok] [autechen |

Figure 7: MIDI Device Configuration Dialog

Now this is a more complex dialog. It has 4 tabs to define all necessary parameters. Let’s start from
left to right:

MIDI Input Devices

This tab is shown in the above figure, so have a look at it there. Here, you can select the MIDI Input
Device(s) that VSTHost should use. You can select one of them by simply clicking on it; to select a
range, click on the first and then shift-click on the last; to add or remove a specific device, control-
click on it.

The “Filter Settings...” button opens a dialog where you can define MIDI Input filters. Filters set on
the MIDI Input Devices tab are global filters; they act on all incoming MIDI messages, no matter
where they come from or where they go to, and before anything else sees them.

The “Transformations...” button opens a dialog where you can define MIDI Input transformations.
Transformations set on the MIDI Input Devices tab are global filters; they act on all incoming MIDI
messages, no matter where they come from or where they go to, and before anything else sees them,
unless they have been filtered. See “Filter Settings and Transformations” on page 44 for details.

16

Note: the list box can contain devices with “(--)” added to their names. These are MIDI devices that
VSTHost is configured to use, but which aren't available (presumably unattached USB devices, or
devices on another PC if using a “stickware” configuration).

MIDI Output Devices

|' MIDI Parameters L«“ﬂ|

MID! Input Devices | MIDI Output Devices | MIDI Thiu | Remote Control Port

Select all used devices:

khicrasol MIDHWapper

Microsoft GS Wavetable SW Synth
Out To MIDI Yoke:
Out To MIDI Yoke:
Out To MIDI Yoke:
Out To MIDI Yake:
Out To MIDI Yake:
Out To MIDI Yoke:
Out To MIDI Yoke:
Out To MIDI Yoke:

o= O U L PO e

Eilter Setings.. | Transfomiations..]

ok] [autwchen |

Figure 8: MIDI Output Device selection

Here, you can select the MIDI Output Device(s) that VSTHost should use. You can select one of them
by simply clicking on it; to select a range, click on the first and then shift-click on the last; to add or
remove a specific device, control-click on it.

Note: the list box can contain devices with “(--)” added to their names. These are MIDI devices that
VSTHost is configured to use, but which aren't available (presumably unattached USB devices, or
devices on another PC if using a “stickware” configuration).

The “Filter Settings...” button opens a dialog where you can define MIDI Output filters. Filters set on
the MIDI Output Devices tab are global filters; they act on all MIDI messages coming from
VSTHost itself, no matter where they come from.

The “Transformations...” button opens a dialog where you can define MIDI Output transformations.
Transformations set on the MIDI Qutput Devices tab are global filters; they act on all MIDI
messages coming from VSTHost itself, no matter where they come from, unless they have been
filtered. See “Filter Settings and Transformations” on page 44 for details.

17

MIDI Thru

|‘ MIDI Parameters ES”

MIDI Input Devices | MIDI Output Devices | MIDI Thru | Remote Control Port

E-DSF MIDI Port [DFOD] v| passes through ta:

* Al loaded MIDI Dutput Devices
Micrasoft MIDIHMapper

Microsoft GS Wavetable SW Synth
Ot To MIDI Y oke: 1

Ot To MIDI voke:
Ot To MID! oke:
Ot To MID! oke:
Ot To MIDI Yoke:
Qgt To MIDI Yoke;
Ot To MIDI voke:
Out To MIDI oke: 8
E-DSPF MIDI Fon [DFO0]

- I N]

Eilter Settings.. | Transtomations.,]

ok] [autrchen |

Figure 9: MIDI Thru Definitions

Here, you can define VSTHost’s “Soft MIDI Thru” behavior. Since PC sound cards normally don’t
have a MIDI Thru connector, the software has to provide it. Since VSTHost can load multiple MIDI
input and output devices, a general MIDI Thru setting would be inappropriate; it might even lead to
MIDI feedback loops. Therefore, you can separately define the MIDI Output devices for each MIDI
Input device that it forwards incoming MIDI messages to. You can select one of them by simply
clicking on it; to select a range, click on the first and then shift-click on the last; to add or remove a
specific selection, control-click on it.

Note: while you can define as many combinations as you like, VSTHost doesn’t remember them all
(spoilsport that it is). When you close the dialog, it loads all configured devices and their MIDI Thru
settings. All MIDI Thru settings for devices that are not loaded (either because they haven’t been
selected or because they could not be loaded for some reason) are lost.

The “Filter Settings...” button opens a dialog where you can define MIDI Thru filters. Filters set on
the MIDI Thru tab are global filters; they act on all MIDI messages that are passed thru from MIDI
In before they are sent to the target device(s).

The “Transformations...” button opens a dialog where you can define MIDI Thru transformations.

Transformations set on the MIDI Thru tab are global filters; they act on all MIDI messages that are
passed thru from MIDI In before they are sent to the target device(s), unless they have been filtered.
See “Filter Settings and Transformations” on page 44 for details.

18

MIDI Clock Output

MIMN Parameters ﬁ

| MIDI Input Devices | MIDI Dutput Devices | MIDI Thiu HIDI Clock Dutput | Remote Control Port

* &l loaded MIDI Dutput Devices *
Microsoft MIDI-Mapper

Miciozolt GS Wavetable SW Synth
Ot To MIDI Yoke: 1

Ot To MIDI oke:
Ot To MIDI oke:
Out To MIDI Yoke:
Ot To MIDI oke:
Ot To MIDI oke:
Out To MIDI Yoke:
Ot To MIDI Yoke:

OO == O O e L D

] Continuous

[ok | [Abbrechen |

Figure 10: MIDI Clock Output Definition

Here, you can define whether VSTHost sends out MIDI Clock signals. Since VSTHost can load
multiple MIDI input and output devices, a general MIDI Clock Output setting would be inappropriate.
Therefore, you can define the MIDI Output devices it sends MIDI Clock messages to. You can select
one of them by simply clicking on it; to select a range, click on the first and then shift-click on the last;
to add or remove a specific selection, control-click on it.

Normally, VSTHost sends MIDI Clock signals only while playing a MIDI sequence; if the
Continuous box is checked, MIDI Clock messages are sent out continuously, not only between
Start/Continue and Stop.

Remote Control Port
[MIDI Parameters =)

MIDI Input Devices | MIDI Output Devices | MID| Thiu | Remalte Control For

Input Part - |v] CExciusive Losd.. |[Seve. |
Tvpe # Chn From To | Bits kil - Parametar From To
Program 5‘ E: Al E] ﬂ 127 ﬂ E] Parformance i 0.000 E 1.000 ﬂ
Bank 4 - [B j 127 j - Bank & 0000 & 1000 &
i | i x 5 H i i =
“Nong* gi & E & g| .o v FPerformance 4| 0.000 3 1.000 gj
QK l [Abbrechan l

Figure 11: Remote Control Port/Channel Definition

Here, you can define VSTHost’s Remote Control. In addition to passing MIDI messages to the loaded
Pluglns, VSTHost can be remotely controlled by MIDI messages, too. Here, you can define a MIDI

Input Port (mental note to self: finally decide on “port” or “device” nomenclature!) that controls VSTHost. It has to
be one of the devices selected on the MIDI Input Devices tab, otherwise VSTHost simply ignores the

19

settings when you close the dialog. The default setting of “---“ means that there’s no Remote Control
port.

Note: the list box can contain devices with “(--)” added to their names. These are MIDI devices that
VSTHost is configured to use, but which aren't available (presumably unattached USB devices, or
devices on another PC if using a “stickware” configuration).

Below the port, you can configure the action for each of VSTHost’s settings that is remote-
controllable; this, I have to admit, is a rather complicated list. This list is of the same type as the one
used in the MIDI -> Parameter Mapping window (see “MIDI -> Parameter” on page 50 for details
on editing it); the difference is that the From and To settings on the Parameter side represent the full
range for the parameter (given below) expressed as a floating-point value in range 0.0 .. 1.0. Unless
you’re really sure what you’re doing, it is probably a good idea to leave these settings alone.

Currently, the following VSTHost parameters can be remotely controlled:

Parameter Type Range Comment

Performance Numeric | 0-127 Selects one of the 128 possible performances in the
current bank (see “Load” on page 64 for details).

Bank Numeric | 0-16383 Selects one of the 16384 possible banks (see “Use
Bank...” on page 31 for details).

Full Rewind Switch 0-1 These parameters correspond to the transport

Rewind buttons in the built-in Wave Player and Recorder

Play Backwards (see “Recorder” on page 73 for details). Any

Stop incoming value maps to a value below 0.5 is

Record ignored; those that do map to 0.5 and above (e.g.,

Play incoming value 127 for a 7-bit MIDI CC) trigger

Pause the corresponding action.

Forward

Full Forward

MIDI Stop Switch 0-1 These parameters correspond to the transport

MIDI Play buttons in the built-in MIDI Player (see “MIDI

MIDI Pause Player” on page 76 for details). Any incoming
value maps to a value below 0.5 is ignored; those
that do map to 0.5 and above (e.g., incoming value
127 for a 7-bit MIDI CC) trigger the corresponding
action.

BPM Numeric | 1-280 Can be used to set the VST engine’s BPM value.
Please note that a 7-bit controller can not access all
possible BPM values — a 14-bit controller,
however, can.

Master Output | Numeric | -60..+10dB | Can be used to set the VST engine's master output
level.

Master Input Numeric | -60..+10dB | Can be used to set the VST engine's master input
level.

Next Switch 0-1 Selects the next performance in the current bank.

Performance Any incoming value maps to a value below 0.5 is
ignored; those that do map to 0.5 and above (e.g.,
incoming value 127 for a 7-bit MIDI CC) trigger
the action.

Previous Switch 0-1 Selects the previous performance in the current

Performance bank. Any incoming value maps to a value below
0.5 is ignored; those that do map to 0.5 and above
(e.g., incoming value 127 for a 7-bit MIDI CC)
trigger the action.

20

All MIDI messages that are translated into Remote Control operations are swallowed by VSTHost; all
others are passed to the VST host engine’s MIDI processing so that the currently loaded Pluglns can
use them.

Joystick Configuration

This, obviously, can only be done if at least one joystick or game pad is installed in your system. If
you have, you can use the joystick(s, up to 2 can be used) to generate MIDI messages for the loaded
Pluglns and/or MIDI Out ports. The joystick handling defaults to no processing at all; so, if you want
to use your joystick(s) in VSTHost, open the Joystick Configuration dialog by selecting its menu
entry:

Devices
MIDL..
Wave...
Joysticks...
Asio Control Panel...
Asho Channel Selection...

Figure 12: Joystick Configuration menu entry

This opens the following dialog:

|’ Joystick Configuration E’il

Joystick 1 XYZ | Joystick 1 RUV | Joystick 1 POV | Joystick 1 Buttons 1-8 | Joystick 1 Buttons 9-16 | MIDI Output Devices

X-Axis

Controller * undefined * w
¥-Axis
Controller * undefined * %
£-Fais
Controller * undefined * %

OK] [Abbrechen

Figure 13: Joystick Configuration dialog

This is one of the many tabbed dialogs in VSTHost; here, a number of tabs appear for each attached
joystick. It depends on the joystick capabilities which ones really appear.

Note: VSTHost only loads the joystick properties once when it starts; Joysticks that are attached or
detached while the program is running are not considered in this dialog.

Joystick n XYZ

The above tab allows the definition of a joystick’s X, Y, and Z axes. These axes normally send analog
data (well, not really... they’re quantized to 0-65535) to allow a wide range of possible positions.
Only the axes that are available are displayed. Each of the combo boxes contains the same entries:

* undefined * i]
" undefined * ~
Pitch Wheel

Velocity Wheel

000: Bank Select

001: Modulation

002 Breath

003

004: Foot Controller
005 Pataments Time
006

Figure 14: Target MIDI message (partial)

21

Here, you can select the type of message that is generated. Nearly all of them are MIDI messages that
are routed to Pluglns and/or MIDI Output ports, with one notable exception: the Velocity Wheel is
part of the MIDI Keyboard Bar (see “Keyboard Bar” on page 80 for details).

Once you select a message type, fields defining additional properties appear:

X-Pods

Controlier 001: Mo i Q;f

[Jzero atcenter [Legarithmic COreverse []14-Bit - o ¥

Figure 15: Axis / Controller Properties

The check boxes have the following meaning:

Zero at center This is mainly interesting for self-centering joystick axes. If this check box is
selected, the stick’s center position is interpreted as the zero position, and
moving the stick in one of the both possible directions increases the value up
to the maximum position. If it is not selected, the leftmost (or topmost, for the
Y axis) position of the stick is interpreted as the zero position, and the
rightmost (or bottommost, for the Y axis) position is the maximum position.

Logarithmic Here, you can define whether the stick’s output is interpreted as a linear or
logarithmic value. “Logarithmic” means that moving the stick in the lower
value area means much finer changes in the MIDI output value than in the
higher value area. This can be useful if your joystick is of the “nervous” kind;
VSTHost uses a relatively generous “center” area, which is interpreted as 0, if
Zero at center is checked. Some joysticks, however, generate values outside
that area, or the values jump around even if you don’t touch the thing. In this
case, it can be very useful to check Logarithmic, since this means that
variations near the center area have much less effect. It can also be interesting
for Pitch Wheels, for example, to add a bit of dynamics.

Reverse This setting reverses the highest and lowest position. This is mainly useful for
the Y axis, where the joystick specification defines that the topmost position
has the lowest value, and the bottommost position has the highest value —
which is precisely the opposite of what you’d expect for a pitch wheel, for
example ©.

14-Bit Depending on which controller is selected (000-031, (N)RPN, you can also
define whether the stick sends 7-bit or 14-bit MIDI messages.

The little knob on the right can be used to determine the MIDI channel (numbered 0..15 here) used.

If you select 101: RPN MSB, the following combo box appears:

PitchBend Range |~

Figure 16: RPN Parameter selection

Here, you can define which of the defined Registered Parameter Numbers is used.

If you select 99: NRPN MSB, an additional knob appears:

p—
b4
o

1| LI

Figure 17: NRPN Parameter selection

Here, you can select the Non-Registered Parameter Number (0-16383).

22

Joystick n RUV

This tab allows the definition of a joystick’s R(udder), U, and V axes. Only the axes that are available
are displayed. The possibilities are identical to those on the Joystick » XYZ tab, so I won’t repeat
them here.

Joystick n POV

This tab can be used to define the joystick’s Point-Of-View controller, also called “coolie hat”
sometimes. The following tab is displayed:

|’ Joystick Configuration E’ﬂ

Joystick 1 XYZ | Joystick 1 RUV | Joystick 1POV | Joystick 1 Buttons 1-8 | Joystick 1 Buttons 9-16 | MIDI Qutput Devices

* undefined * v/
* undefined * » .. :.'_ * undefined * -
* undefined * v

[OK] [Abbrechen

Figure 18: Joystick n POV Configuration tab

This little knob, normally sitting on top of the stick, is a digital device, like the buttons described
below. It can normally be moved into 8 possible positions (besides the center position): up, up-+right,
right, right+down, down, ... you get it. Putting it into one of the combined positions can be used to
emit up to 2 MIDI messages at once. Each of the combo boxes contains the same entries:

* undefined *

" undefined ”

Note

000 Bank Select
0071: Modulation
002 Breath

003

004: Foot Controller

005 Portamento Time
006

007 Volume

008: Balance

Figure 19: POV Target MIDI Message (partial)

As you can see, there are less possibilities here than on the analog axes described above; since the
POV controller is effectively just a set of 4 buttons that are either on or off, it makes no sense to use it
as, for example, a controller for pitch wheels.

Once you select a message type, fields defining additional properties appear:

Note == -~ L 001: Modulation -~ A 099 NRPN MSB ~ b b

| o o 2] o = s 0 = = o

Figure 20: POV Controller Properties

If Note is selected, an additional combo box appears where you can select the note number. This note
will be turned on if you activate the POV button and turned off if you release it. The (right, for
NRPNs) knob defines the MIDI channel (range 0..15 here); the left knob (NRPNs only) defines the
Non-Registered parameter number (0..16383), just like in the analog axes described above. RPNs are
not used for joystick buttons; none of them makes any sense for an on-off type of message. Also, the
various options available for the analog axes are not implemented for the POV buttons (I mean, how
much sense does it make to send “Off” or “On” with 14-bit resolution? ©).

23

Joystick n Buttons m-n

This tab can be used to define a set of the joysticks’ buttons. The number of these tabs is defined by
the number of buttons on the joystick (up to 32, although I’ve never seen one with that many buttons).
The following tab is displayed:

| Joystick Configuration | x|
Joystick 1 XYZ | Joystick 1 RUV | Joystick 1 POY | Joystick 1 Buttons 1-8 | Joystick 1 Buttons 316 | MIDI Output Devices

Button] Button &

*undefined * v * undefined *]

Button 2 Button §

* undefined * ~ * undefined * ~

Button 3 Button 7

* undefined * ¥ “undefined * bt

Bution 4 Button §

* undefined * L * undefined * ~

[OK l [Abbrechen

Figure 21: Joystick Button Configuration tab

Only the buttons that are available are displayed. Each of the combo boxes contains the same entries:

* undefined *

" undefined *

Note

000: Bank Select
001: Modulation
002 Breath

003

004: Foot Cantrallar
005: Portaments Time
006

007 Volume

008: Balance

Figure 22: Button Target MIDI Message (partial)

As you can see, there are less possibilities here than on the analog axes described above; since a
joystick button can only be either on or off, it makes no sense to use it as, for example, a controller for
pitch wheels.

Once you select a message type, fields defining additional properties appear:

£ P % P)
Mote o -~ < 001- Maodulation -~ - 055 NRPN MSB - b b

0 I ol o ® e o) = o

Figure 23: Button Controller Properties

If Note is selected, an additional combo box appears where you can select the note number. This note
will be turned on if you activate the button and turned off if you release it. The (right, for NRPNs)
knob defines the MIDI channel (range 0..15 here); the left knob (NRPNs only) defines the Non-
Registered parameter number (0..16383), just like in the analog axes described above. RPNs are not
used for joystick buttons; none of them makes any sense for an on-off type of message. Also, the
various options available for the analog axes are not implemented for buttons (I mean, how much
sense does it make to send “Off” or “On” with 14-bit resolution? ©).

24

MIDI Output Devices

Here, you can define the MIDI Output device(s) that the joysticks send their data to. The following tab
is displayed:

| Joystick Configuration X
Joystick 1 XYZ | Joystick 1 RUV | Joystick 1 POV | Joystick 1 Buttons 1-8 | Joystick 1 Buttons 9-16 | MIDI Output Devices

Selectall used devices

* All loaded MIDI Output Devices *
MIDIYoke NT: 7

OK] [Abbrechen

Figure 24: MIDI Output Devices tab

This tab is always available. Normally, the joysticks don’t send MIDI data to the MIDI Output ports;
if you want to, you can configure it here. The list box displays all loaded MIDI Output devices. You
can select one of them by simply clicking on it; to select a range, click on the first and then shift-click
on the last; to add or remove a specific device, control-click on it.

Other Configuration Tasks

While there are quite some other things that can be configured in VSTHost, they are not installation-
related, so they’ll be described later, when it is appropriate.

Deinstallation

If the need arises to deinstall VSTHost, the procedure is simple: remove the directory you installed it
to and you’re done. Unless you explicitly reconfigured it using techniques described in “Set Data
Path” on page 32 - in this case, you also need to locate and remove the data subdirectory as well.

If you created multiple banks and positioned their directories outside VSTHost’s subdirectory tree,
they need to be removed manually, too.

That’s it. There isn’t more to it.

25

Operation

Command line parameters

Just to prevent mouse junkies from going “Eeeek!” — no, VSTHost is not a command line oriented text
program, it is GUI-oriented; but you can give it some command line parameters for special occasions.
So, let’s describe them in a good old-fashioned style...

Syntax

VSTHost [/option]*

[PlugIn]

The []’s mean that all parameters are optional. If the command line parameter starts with a ¢/ or ‘-, it
is treated as an option. The ‘*’ means that more than one option can be given. Here’s the meaning of
all possible parameters, in alphabetical order:

/automidi

/bank=n

/forceBridged

/forceJBridged

/fullscreen

/hidden

/maxchn=n

/noasio

/moaudio

/moavrt

/modsound

/nmoexc

If no MIDI devices are configured, this setting forces VSTHost to load the
first configured MIDI input and output device.

Forces VSTHost to load the bank with the number given instead of the one
last stored in the .ini file. NV can be any number in range -1 to 16383. See
“Use Bank...” on page 31 for the bank concept in VSTHost.

Sets the default bridging mode to “force bridged” (see “Bridging” on page
35 for details)

Sets the default bridging mode to “force bridging using jBridge” (see
“Bridging” on page 35 for details)

Forces VSTHost to come up in full-screen mode (for that extra bit of screen
estate). In this mode, the menu is only accessible as a pop-up context menu.
Forces VSTHost to come up with a hidden main window; this is a very
special option that should not be used unless you really know what you're
doing.

Normally, VSTHost's audio engine uses a maximum of 32 for the number of
channels. That's sufficient for most configurations; sometimes, however, this
limit may be too low. With this parameter, the maximum number of
channels can be set to anything between 2 and 256.

Forces VSTHost to ignore all ASIO drivers. This can help to determine the
cause if VSTHost inexplicably dies while initializing (see /noaudio below).
Forces VSTHost to come up without any loaded audio driver. This can help
to determine the cause if VSTHost inexplicably dies while initializing. At
least in one case, VSTHost tried to load a (still installed) driver for a sound
card that was removed from the computer — bang...

Prohibits loading avrt.dll and thereby using the Multimedia Class Scheduler
Service built into Windows Vista and newer.

If VSTHost is running in a WINE environment, this is automatically
disabled, since WINE (at least up to v3.5) doesn't have a complete
implementation and only terminates VSTHost if this functionality is used.
Forces VSTHost to ignore all DirectSound audio drivers. This is mainly
interesting as a diagnosis aid if you experience strange problems when
VSTHost starts. In a Linux / wineasio environment, it is automatically
assumed, since the DirectSound device capabilities detection routine in
VSTHost obviously doesn’t work correctly in a WINE environment.

Forces VSTHost to run in a less secure mode. Normally, exceptions
generated by badly behaving Pluglns (and VSTHost itself) are caught at
various points in VSTHost, and it tries its best to recover as gracefully as
possible. If something really goes wrong, VSTHost tries to perform an
orderly shutdown (close all opened audio and MIDI devices, then stop).

26

/noft

/mokillvstkeys

/noload

/nolocal

/momidi

/nomme
/nopv

/moreusewavmid
/nosave

/moskin

/mosse

/mosse2

/mumProcessors=n

/perf=n

Sometimes, under mysterious conditions, this can lead to problems; in this

case, you can try to disable this outermost “catch-all” exception handler.

Forces VSTHost into an even less secure mode © - this stands short for “No

Fault Tolerance”. In this mode, VSTHost doesn’t catch any exceptions.

Whatever happens will kill VSTHost. This parameter is interesting for VST

Plugln developers only.

Listed just for completeness — don’t touch this one unless specifically

requested to do so.

Forces VSTHost to skip the initial loading of the previous (or default) setup

when it comes up. This, together with the /nosave parameter, can be used to

quickly debug a Plugin.

Forces VSTHost to come up with the internal English language. Since

V1.44, VSTHost can use so-called “satellite DLLs” — DLLs with localized

resources in other languages. vsthostDEU.dIl and vsthostFRA.dll are

included, and automatically loaded on systems where the primary Ul

language is set to German or French.

By the way - if somebody would volunteer to translate VSTHost's texts into

another language, please don't hesitate to contact me!

Forces VSTHost to come up without any loaded MIDI driver. Same reason

as for /noaudio.

Forces VSTHost to ignore MME audio drivers. See /noaudio above.

Forces VSTHost to ignore pure virtual call errors.

This is a rather arcane problem which indicates a programming error in

VSTHost. Normally, VSTHost gives as much diagnostic output as possible

(very useful if you contact me!) and tries an orderly shutdown; with /nopv

given, VSTHost only shows the standard error message “R6025 pure virtual

function call” and terminates without any cleanup attempts.

Note: this setting has no effect in the Win98 version which uses a compiler

version that can't handle this problem.

Sets the default for “Reuse Wave/MIDI Files” (see page 67) to unchecked.

Forces VSTHost to skip the saving of the complete current setup upon

program termination. Normally used together with the /noload parameter in

a debugging situation.

Forces VSTHost to come up without a skin (see “Skin” on page 84 for

details).

Forces VSTHost to ignore the processor's SSE capabilities (if available) and

only use the x87-compatible FPU.

Since SSE speeds up operations considerably, this option should be used

with care. In most cases, its only effect is to slow VSTHost down a bit.

Forces VSTHost to ignore the processor's SSE2 capabilities; setting /nosse

automatically includes /nosse2.

Unless you're using the double-precision version of VSTHost, SSE2 is not

used very much inside VSTHost — but where it's used, it is normally faster

than the FPU. On some Core Duo variants, however, SSE2 can be slightly

slower than the normal FPU usage, so setting this option might help to

squeeze out a tiny little bit more processing power (in the range of 0.1% for

a setup with many Pluglns).

In a multiprocessor environment, VSTHost normally uses as many cores and

processors as possible. Using this option, you can force VSTHost to operate

in single-processor mode, like versions before V1.43 did, by specifying
/mumProcessors=1

You can enter any value here; values below 1 are ignored, values greater

than 32 are interpreted as 32. Please keep in mind that it makes absolutely no

sense to specify a higher number of processors than you have inside the PC;

it won’t make your computer go faster ©.

Forces VSTHost to load the performance with the number given instead of

27

the one last stored in the .ini file or 0, depending on the setting of the
“Reload” Performance setting (see page 67). IV can be any number in range
0 to 128. /perf itself can be overridden by specifying /noload.

/runBridged Sets the default bridging mode to “run bridged” (see “Bridging” on page 35
for details)
/slave[:nn] Forces VSTHost into Slave mode; the Slave mode and how to use it is not

part of this document.

/tracebase=nnnn These parameters are only interesting for the tracing version of VSTHost;

/tracemask=nnnn normally, you don't need them. Details and other ways to override the

/tracebreak=nnnn default settings are described on page 93.

/tracekeep=nnnn

/userexit=name Forces VSTHost to load a User Exit DLL. Currently only one User Exit
DLL has been created for the Lionstracs Mediastation (see
www.lionstracs.com for details) to allow a better integration into this
environment.

plugin The complete path name of a Plugln to load. This is normally used in a
debugging environment, but also if you drag a Plugln onto VSTHost’s icon.

Multiprocessor provisions

In versions before V1.43, VSTHost didn’t care much about the capabilities of the machine it runs on.
There are, as I freely admit, only very few processor-specific optimizations, which may make it a little
bit slower than commercial packages, but it also means that it simply works on practically every
machine that can load at least Windows 98 (Windows 95 doesn’t require a floating-point coprocessor,
which VSTHost absolutely needs). In case of a multiprocessor machine, however, this lack of interest
for its environment is a bit out of place, since it would mean that VSTHost only uses one processor.
Since the rise of the Core Duo and Athlon64 X2, this isn’t a good idea any more; a steadily increasing
number of machines have multiprocessor cores, and it’s not really fine if VSTHost uses only one half
(or less, in case of a quad core machine) of the available processing power.

Since V1.43, VSTHost can use as many processors as there are in the machine (up to 32, which is a
hard-coded 32-bit Windows limit; the x64 version can use 64 cores). If there’s only one processor, the
overhead is minimal (2 additional “if” statements in the audio processing thread). If there are more,
it’s considerable, but it pays off in the end.

Technical explanation

If you just want to make music, damnit!, you can safely ignore these paragraphs, although they might
help you to get the maximum performance from VSTHost if a certain configuration simply doesn’t
work the way you thought it should.

VSTHost starts as many processing threads as there are processors available. While processing audio,
it determines how many possible thread start points are possible, and then triggers as many threads as
possible and necessary to go to work on them. Each thread finds the same set of thread start points; the
first thread going to work on a start point blocks this path for the other threads, which go on searching
for thread start points to process. This continues until all threads come to the conclusion that there are
no more thread start points to process.

Thread Start Points

What is a “thread start point”? Hmm... well, VSTHost can only parallelize audio processing of
independent Pluglns. If a Plugln’s input is dependent on another Plugln’s output, they have to be
processed sequentially. Consider a simple setup:

Audio In —» Plugln A —P» Audio Out

28

http://www.lionstracs.com/

Here, nothing can be run in parallel. Everything has to be done in a strict order. VSTHost doesn’t even
bother to trigger a thread running on a second processor, as there is only one thread start point —
Plugln A. Now, let’s assume that Plugln A is a VSTi, and you want to run its output through a delay
effect:

Audio In —P» Plugln A —P PlugihB [—» Audio Out

Everything still has to be done in a strict order, Plugln a remains the only thread start point. In such a
configuration, there’s absolutely no performance gain from a multiprocessor machine.

A slightly more complex setup would be this:

Audio In —P» Plugln A 7{ Audio Out
Plugln B

Here, VSTHost can run the two Pluglns in parallel; it just to wait with the final audio output until both
Pluglns contributed their outputs. Plugin A and Plugln B are thread start points.

Let’s progress to an even more complex example:

Audio In —» Plugln A Audio Out

Plugln B

Plugln C

Here, VSTHost could, in theory, run all three Pluglns in parallel; it just has to wait with the final audio
output until all three Pluglns have contributed their outputs. Plugln A, B, and C are thread start points.
There’s no problem... but wait — let’s assume that there are only 2 processors available. What happens
now? In this case, VSTHost sends 2 threads to work, one on each processor. The first one that “sees”
Plugln A starts to work on it and marks it as “started”. The second one sees that Plugln A is already
being worked on, looks for another start point, and finds Plugln B, so it starts to work on this one.
After some microseconds, both threads come back for more work as Pluglns A and B are finished; the
first one processes Plugln C, the second one stops.

And now for a really complex example:

Audio In —p»| Plugln A

) Plugln E
Plugin B PlugIn F
Audio Out
Plugln C

Plugln D

Here, we see 4 thread start points: Plugins A, B, C, and D. Assuming our 2 processors again, the
behavior becomes rather indeterminable now. One thread will presumably go to work on Plugln A, the
other one will go to work on Plugln B. Each of them will contribute the respective PlugIn’s output to
Plugln E’s input. The thread that determines that Plugln E has enough input now will continue
processing E, the other one will continue with the next thread start point, which is Plugln C. Now,
each of the 2 threads contributes to Plugln F’s input; the one that determines that Plugln F has enough
input will process Plugln F, while the other one begins work on Plugln D. In this setup, processing
should be rather evenly spread over the two processors — unless one of the Pluglns A, B, C, or E takes
much longer than the others. In this case, the other thread will finish its work after going through all
the other start points and finding that there’s nothing more to do after the first Plugln, since Pluglns E

29

and/or F need more input; VSTHost has to wait until the first thread completes the whole sequence.
This situation leads to an uneven work distribution, but there’s nothing that VSTHost can do about it.

In other words, even if there are two or more processors, VSTHost can not guarantee that they are
fully used; depending on the configuration, it might happen that the performance gain is negligible.
Some Pluglns contribute to the uncertainty in their own way by being multiprocessor-aware, so they
try to spread their processing over multiple processors themselves.

OK, technical stuff finished, let’s continue and finally start working with VSTHost...

Main Window
Now that we’ve finally started and parametrized VSTHost, let’s return to our initial picture:

|4# VsTHost 0: ** Init ** - 1: Engine Output =Jokd
fie Pugin Epgine Devices View Window Hep

_.:-Ini!- 7| 95 E S0 0SS el 1200pm AN ME M e H €
| o4 4« W& » 1l ¥ W 1Y == w B

' - =

=N

Figure 25: VSTHost Initial (again)

Since V1.46, VSTHost always shows two built-in Pluglns: {In} and {Out}. These “Pluglns” are used
to make it easier to graphically show the audio flow, and they have the additional benefit that you can
set up Remote Control operations for them — you can, for example, define a MIDI controller to silence
Audio In or Out separately. The buttons and connectors on the windows for these Pluglns are
described later (see “New PlugIn” on page 33 or “Plugln Menu” on page 42 for details).

Voila — VSTHost works.

Menu Entries

|Ei|e PlugIn Petformance Engine Dewices Wiew Window Help

Figure 26: VSTHost's unimpressive Main Menu

Practically all of VSTHost’s operations can be controlled from the menu, so let’s examine that in
detail.

30

File Menu
File
IUse Bank...

Set Data Path...

Mew PlugIn... Chel+m
PlugIn Auto-Connect

Set PlugIn Path...

Rescan Pluglns

Fast Rescan Pluglns

Rescan an Skark

IJse Plugln File Mames

Pluglns r

Exik Alt4+F4

Figure 27: File Menu

Here, you can organize VSTHost setups (called “performances”, organized into “banks”) and load
new Pluglns into the current performance. Plus, of course, terminate VSTHost ©.

Use Bank...

This menu opens a dialog to let you select one of the possible VSTHost Performance Banks:

[Select VSTHost Bank &

*Internal Bank * ~
Bank 0: * undefined *

Bark 1: * undefined * I
Barnk 2 * undefined * cocal
Bark 3 “ undefined *

Barnk 4 “ undefined *

Barnk b “ undefined *

Bank b * undefined *

Bank 7 * undefined *

Barnk & “undefined *

Barnk 9 * undefined *

Bark 10:* undafined *

Bark 11:* undafined *

Bank 12:* undefined *

Barnk 13:* undafined

Bank 14:* undefined *

Bank 15:* undafined *

Bank 16:* undefined *

Bark 17:* undefined *

Bank 18:* undefined *

Bank 19:* undefined *

Bank 20:* undafined

Bank 21:* undefingd *

Bk 23 - ndefned- [e]
Bank 23:* undefined * Eath.

Bank 24-* undefined *

Rank 75-* undafinerd * s Clear

Figure 28: Bank Selection Dialog

There are two types of banks in VSTHost; the Internal Bank, which is stored in the file
“#Internal.vsthost” in VSTHost’s data directory (see “Set Data Path” on page 32), and up to 16384
different file banks. The internal bank is used by default, as no file bank has yet been allocated. Only
the file banks can be selected by remote operation.

To select one of the banks, simply double-click it, or select it and press OK. If the bank file has
already been configured, the dialog is closed and the new bank is used from now on; if, however, the
bank file is not configured (or the file name has been removed with the Clear button), a file selection
dialog is opened where you can select a file to be used to store VSTHost’s performances to. The
default value should normally be OK, but you can override it, if you want to. You can enter the name
of a non-existing file here; if it doesn’t exist, VSTHost allocates it.

A Bank file contains a set of up to 129 VSTHost performances (see “Load” below). By default,
VSTHost stores its performances in the internal bank; since 129 configurations might be too few for

31

some people, you can change to file mode, which gives you up to 16385 banks of up to 129
performances each. That should be enough, I think ©.

Note: selecting another bank does not change the currently loaded performance in any way; if you
want to select a program from the new bank, you have to load another performance, too. This behavior
can be used to copy performances from one bank to another; simply load the performance, then switch
to the target bank, and save the performance (you can use “Save Performance As...” to save itto a
new name and/or position, if you want to).

Set Data Path

This menu entry can be used to set a new Data path for VSTHost. The default value is VSTHost’s
location, with an appended \Data.

Before V1.43, VSTHost stored nearly all settings in the Windows registry; over time, this amounted to
a very complicated setup with hundreds of sub-keys, which isn’t really easy to work with. VSTHost is
using an initialization-file-based operation now. This makes it easier to change settings outside
VSTHost (one click opens the correct file, no cunning navigation through Regedit’s nested structures
needed), and eases the path to a preconfigured setup — instead of an installer program, just copy the
necessary files together with the application.

VSTHost uses a layered approach; when it starts up, it reads the data path from an initialization file
that resides in the same directory as the VSTHost executable, and has the same name, but with the
extension .ini (please note the careful wording — you might have renamed the thing from VSTHost.exe
to blabla.exe, for example; in this case, it would be blabla.ini). This initialization file, allocated when
you start up VSTHost for the first time, is very simple; here’s an example:

[Settings]
DataPath=C:\Program Files\VSTHost\Data

Figure 29: VSTHost.ini

The interesting thing about this setting is that it allows a multi-user setup, because you can put
environment variable names into the data path. Here’s an example that should work in all Windows
NT variants (NT / 2000 / XP / Vista / 7):

[Settings]
DataPath=%APPDATA%\VSTHost

Figure 30: Multi-user VSTHost.ini

An additional method has been added in V1.53 to allow the installation of VSTHost on a machine that
contains multiple operating systems, where each operating system should have its own setup. This
case is a bit more complex.

First, you need to define an environment variable (either globally or by starting VSTHost from a batch
file), with a value that's different for each operating system. Then, you can put additional settings into
the .ini file for each operating system by setting an entry called DataPathMulti to the .ini file, which
defines a value that is appended to the DataPath key, and adding the various DataPathXXXX settings.

As an example, let's say you have Vista and XP installed and want both to use the same VSTHost, but

with different settings. So you might add the following environment variable to the system:
OSNAME=Vista

(on Vista) and
OSNAME=XP

(on XP). Then, you can direct VSTHost to use a specific path by adding the following settings:

[Settings]
DataPathMulti=%0SNAMES
DataPathXP=D:\Programme\VSTHost\Data

32

|DataPathVista:C:\Program Files\VSTHost\Vista\Data

Figure 31: Multi-OS VSTHost.ini

Once VSTHost has read the data path from this initialization file, it switches to another initialization
file that resides in the given data path, and has the same name as VSTHost’s executable, but with the
extension .ini (see above regarding the careful wording ©). This is VSTHost’s main initialization file,
where all the settings are kept. Other files that are read from there are Pluglns.ini (containing
information about all Pluglns that VSTHost knows; see “Set Plugln Path” on page 36 for details),
effCanDos.ini, and hostCanDos.ini (these files, which come with the VSTHost package, contain a
header that details what they are good for).

The default setup assumes that all data that VSTHost uses are put into the same directory; with this
menu item, you can define another data path for them.

Attention: if you decide to change the data path to another directory, and want to put some or all of
the already existing data there, you have to copy the data files from the old to the new directory
yourself — and you have to change the absolute paths that might be stored inside VSTHost.ini, and/or
the *.vsthost bank files. VSTHost doesn’t do that for you (unless the configuration has been saved
with one of the latest VSTHost versions and contain “%BankPath%” instead of an absolute path).

New Plugln

Now it gets interesting. .. if this menu entry is selected, VSTHost opens a file selection dialog box that
allows locating a Plugln that you want to add to the current performance. Since VSTHost is a simple
little program, it doesn’t perform lengthy “Where are the Pluglns?” scans upon program start to
present a nice, preformed list of available Pluglns (unless you specifically tell it to; see “Rescan on
Start” on page 37 for details); it simply allows you to select the file containing the Plugln. In
Windows, Pluglns are normally simple DLLs, i.e., their names end with “.dl1”.

If a “big player” (Cubase, Nuendo, etc.) has already been installed on your computer, it has set up a
directory where VST Pluglns are installed; normally, the path to this directory is stored in the registry
under HKEY_LOCAL_MACHINE\Software\VST in the value VSTPluginsPath. If VSTHost finds
this value, it starts the file selection dialog there; if not, it uses the current directory.

In any case, once a Plugln has been selected and loaded, VSTHost remembers the directory where it
took it from as its new start point.

Once you have loaded a Plugln, VSTHost presents it in a little window on its main client area, like this
(the example uses ASynth, a nice freeware VST instrument):
% TR

B8 2. Asynth.di B8

G Asyntn || G

Figure 32: Example for a loaded PlugIn's Main window

There are some buttons on that window. All of them are just alternatives to entries of the Plugln menu
(see “PlugIln Menu” on page 42 for details) and the main toolbar (see “Toolbar” on page 78 for
details). If you move the mouse over a button and leave it there, a little pop-up text will be displayed
that tells what the respective button can be used for. On the right side, there’s a little level meter that
displays the Plugln’s current output level. The Main window can be dragged around on the screen
with the mouse to any location you like.

33

Since the links between Pluglns are displayed there, too, this can be used to arrange the Plugln

windows in a way that shows the relations between them, like this:

| @ VsTHest 11: Slightly more complicated - Master =8
Fle Engne Devices View Whdow Hep
_iSIighIfy more complicatsd _v_ T a|ale @ o B % G e b zoeem G0 [EE N E| 2

(W« « me » 0 »m) 0000/4814 /= m oo [0 - ¥

[[Reay 116% -35d8 |

Figure 33: VSTHost Main Window with some Pluglns loaded

Since V1.44, there are some funny little dots to the left and to the right of the Plugln main windows;
these are “connectors” which allow to define links between the Pluglns as a convenient alternative to
the “Chain After...” menu item (see page 59 for this one). On the left side, there’s an Audio Input
connector and a MIDI input connector; on the right side, there’s an Audio Output connector and a
MIDI Output connector. Only connectors that make sense for this Plugln are shown; if, for example, a
Plugln as no audio input channels, the Audio In connector is omitted.

You can click on one of the connectors with the left mouse button, upon which the connector changes
its color; now, without releasing the mouse button, move to the corresponding connector of another
Plugln that you want to create a link to. If you reach a connector that can be used, it changes its color,
too; now you can release the mouse button to create a link.

Double-clicking on a line between two connectors opens the “Chain After...” window of the target
Plugln so that you can change the link type, level, and so on.

To delete a link, simply select a connection; you can do this either by clicking on a connector and then
dragging the mouse onto an existing line, upon which the line changes its color, or by clicking directly
on the line between the two connectors. As soon as the line changes its color, you can delete the
connection by clicking with the right mouse button — without releasing the left mouse button first. This
may sound complicated at first, but if you try it, it’s rather intuitive (as “intuitive” as this whole
computer stuff can get ©).

Unfortunately, this doesn't always work (as an example, I got a mouse pad on a laptop that flatly
refuses to consider ‘2 buttons pressed simultaneously” as something a sensible user might ask for); in
this case, double-clicking the line to get to the target Plugln's “Chain After...” window and deleting the
link there is the fastest option.

Another notable thing about the Plugln main window is the background image; this one is different for
Instrument and Effect Pluglns. If you don’t like it, you can provide another one — VSTHost looks for a
.BMP, .JPG, .JPEG, or .PNG file that comes with the PlugIn. If, for example, your Plugln is a DLL
located at “C:\Program Files\VstPlugins\Again.dll”, and there is a file called “C:\Program

34

Files\VstPlugins\Again.bmp” (which really holds a bitmap ©), VSTHost will use the this bitmap as
the background for the Plugln main window.

You can also use the Plugln main window to assign a label to the Plugln; double-clicking on the
second text line brings up an edit field where you can override the Plugln's display text. If you got
more than one Plugln of the same kind (let's say, 2 compressors for different signal paths), this can
make it easier to identify them, since all windows for the Plugln carry this label in their title bar, and
also in the Window Menu (see page 84 for details). Removing the text brings back the original display
text.

Bridging

Up to V1.47, VSTHost was a pure 32-bit program (code, not audio format this time ©). This means
that it could only load 32-bit Pluglns; if you're running it on a 64-bit system (Windows Vista /
Windows 7), and already have assembled a nice collection of 64-bit PlugIns (still very much future
music while I'm writing this), VSTHost couldn't load these. Steinberg provides a separate bridge
program in their Cubase / Nuendo products for this; VSTHost didn't.

Since V1.48, VSTHost contains its own set of bridging programs (VSTHostBridge32.exe and
VSTHostBridge64.exe) which, on a 64bit Windows, allows the 32-bit version of VSTHost to load 64-
bit Pluglns — and the other way round, as VSTHost also comes in 64bit form. VSTHost's bridge
program allows all Plugln kinds supported by VSTHost to be bridged: VST 1/2/3 and VST Module
Architecture. There's no need for an installation procedure; just place the two programs into the same
directory where VSTHost.exe resides, and they are found automatically.

If VSTHost and the Plugln have a different “bitness” (i.e., one is a 32-bit module, the other one a 64-
bit), bridging takes place automatically; if you want to force bridging for a Plugln that has the same
“bitness”, you have to add the entry runBridged=1 (run all Pluglns in one concentrated bridge
program) or forceBridged=1 (run each Plugln in its own dedicated bridge program) to the Plugln's
section in effCanDos.ini (look into VSTHost's data directory for that). effCanDos.ini contains a
descriptive header that describes which values can be set for each Plugln, and how. It's a simple text
file, so any text editor can be used to modify it.

Alternatively, you can use the command line parameters /runBridged, /forceBridged, or
/forceJBridged to set the default values VSTHost uses when loading Pluglns (see “Command line
parameters” on page 26 for details). These command line parameters can be overridden, too:
* pressing Ctrl while loading a Plugln toggles the /runBridged setting
» pressing Ctrl+Shift while loading a Plugln toggles the /runBridged and /forceBridged
settings
Please note that this does not override settings given in effCanDos.ini.

Attention: there are some limits to what bridging can do. A bridged Plugln that tries to modify a
window in the host by sub-classing it (a very bad practice anyway), for example, is doomed to an
instant death, since the host windows are not handled in the same process. I've tried to make

VSTHost's bridge as universally usable as possible, but it can't catch every possible misbehavior.

This bridging code is still quite new; I can't guarantee that it works satisfactorily under all conditions.
If VSTHost's bridge programs don't work for a specific Plugln, there's another possibility:

35

JBridge

Since V1.47, VSTHost supports JBridge, which can also be used to “bridge” the gap between the 32-
bit and the 64-bit world. You can find JBridge at http://jstuff.wordpress.com/jbridge/. Just installing it
is sufficient — you don't need to do anything else, as far as VSTHost is concerned. If you want to use
JBridge for a specific Plugln, you have to add the entry forceJBridged=1 to the Plugln's section in
effCanDos.ini (look into VSTHost's data directory for that). effCanDeos.ini contains a descriptive
header that describes which values can be set for each Plugln, and how. It's a simple text file, so any
text editor can be used to modify it. JBridge only supports VST1/2 Pluglns, however.

Shell Pluglns

There are some special Pluglns called “Shell Pluglns”; these are special in that they are no effect or
VSTi by themselves, but they provide a “shell” for a set of secondary Pluglns. The Waves bundles
(see www.waves.com for these) are a prominent — and perhaps the only — example for this special kind
of PlugIn. If VSTHost encounters one of these, it doesn’t immediately load the Plugln, but presents a
dialog that allows you to select one of the secondary Pluglns, like this:

Select Plugin. .. %]

AudinTrack ~
AudioTrack Mono

C1 comp Mono

C1 comp-gate

C1 comp-gate Mono

C1 comprsc

C1 comp-sc Mono

C1 gate

C1 gate Mono -

Figure 34: Shell PlugIn Selection Dialog

Once one of the Pluglns has been selected, it is opened just like any normal Plugln.

PlugIn Auto-Connect

This menu entry defines what happens when a new Plugln is loaded. Normally, it is checked; in this
setting, a new Plugln is automatically connected to Audio In and Audio Out. This is a good thing for
quick tests — when loaded, the Plugln can instantly be used. If you're in the process of setting up a
more complex configuration, however, it may be easier to clear this setting. In this case, the Plugln is
not connected at all, which makes it easier to set up a Plugln chain, as you don't have to remove the
unnecessary Audio In and Out links.

Set Plugln Path

This menu entry opens a dialog where you can define the Plugln path(s) that VSTHost uses to
generate its Plugln list.

| VST Plugin Paths B
[E\Programme\Steinberng\WsiFlugins
Cancel |

Figure 35: VST Plugln Path dialog

Here, you can define a set of paths that are searched, one in each line. The “...” button opens a
standard directory selection dialog where you can select new paths to be added to the list, if you don’t
know the location by heart. Changing the contents of this list and leaving the dialog with OK
automatically leads to a Fast Rescan (see below).

If a “big player” (Cubase, Nuendo, etc.) has already been installed on your computer, it has set up a
directory where VST Pluglns are installed; normally, the path to this directory is stored in the registry

36

http://www.waves.com/
http://jstuff.wordpress.com/jbridge/

under HKEY LOCAL_MACHINE\Software\VST in the value VSTPluginsPath. If VSTHost finds
this value, and has no Plugln path of its own set yet, it automatically initializes the list to this value.
The Standard button can be used to add them to the list if they aren't there already.

You can also put exclusions here by prefixing them with a < character. These exclusions can be both
directories (in which case VSTHost won't search any path that starts with the text following <) and
files (in which case VSTHost won't search any path that ends with the text following <).

Note: exclusions have to precede paths that would include the excluded directories and/or files, since
VSTHost processes the list sequentially. Also note that excluded directories have to be fully qualified.

Rescan Pluglns

When selected, VSTHost performs a full scan of all Pluglns in the configured Plugln paths (see above)
to fill the PlugIns submenu (see “Pluglns” on page 38). This can take quite some time, since VSTHost
has to load, analyze, and unload each file that's possibly a Plugln which it encounters.

Fast Rescan Pluglns

Does the same as “Rescan Pluglns” (see above), but it only scans Pluglns that it doesn’t already have
in its list, which can be much faster, depending on the number of installed Pluglns.

Rescan on Start

When checked, VSTHost performs a fast rescan (see above) every time it is started. While this can
slow down things a bit, it guarantees an accurate Plugln list.

Force Bridged Rescan

When checked, VSTHost loads all Pluglns in bridged mode while scanning them. While this can slow
down things quite a bit, it should prevent VSTHost from dying in a spectacular way each time it
encounters a rogue Plugln, as each Plugln is loaded into a dedicated new bridge process. If a problem
comes up, only the bridge process dies, but VSTHost remains alive.

Note: sometimes, the Plugln doesn't kill the host, but just hangs (Pluglns employing eLicenser
protection seem particularly inclined to do that if their dongle is missing). In this case, the scan in
VSTHost will hang; the only way to get it to continue is to kill the hanging bridge process (normally
called “VSTHostBridgeXX.exe”, XX being 32 or 64) from the Windows Task Manager.

Use Plugln File Names

When checked, VSTHost uses the Plugln file names instead of their display names in the Plugln lists
(see “Pluglns” below for this). This can sometimes be helpful, and is in most cases far more compact,
but not necessarily as informative as the list of display names.

Categorize Pluglns

When checked, VSTHost does not use the original Plugln paths to set up the menu, but categorizes
them instead, based on Plugln architecture and vendor name.

37

Plugins

After the Plugln paths have been scanned, this menu entry turns into a submenu that lists all currently

available Pluglns, like this:

Plugins] Abakos » | @ Bitviewer M ScannedSynth

asseca v | & Channel Grabber M stz
BizuneVsT » | @ CMxB44 @ SuperEel2
Cockes * | B Crystal @ Tapln.2
DashSignature.com | @ DCKiller M triforce
Detektor b | @ frogplays I Trollo VST
0 Shell + |] FruityLoops VSTI w96
EnergyXT + | M FruityLoops WSTI (multi) @ ve_ffxd
GVST + | MlimpOSCar Synth @ vsth-pw
Halion b | @ Inspector @ VSTHost Slavery Sulte: Legree
jamstix v | @ Kondor VST M) VSTHost Slavery Suite: Legree VST
JxPlugins + | Ml Mantragora @ VSTMonitor
IxSynth 1.2 + | Mimda Fiano
KarmaFx v | @ MiBox
Kjaerhus v | @ MultifxwsT
Lightwave + | Ml Meon Soft Synth
MicroModular + | Ml Ohm Force Minimonsta 1,01
Mini | @ Ohm Force Minimonsta 1.01
ndeMIDT + | Ml ohm Force Oddity 1.14
Husi v | @ overloader
Oatmeal * | @ P-Bugger
Obbo + | Ml Fhrazor
Sonichytes b | @ Phrazor FX
SoundFonts.it v | Ml FPG Wave 2.2 / 2.3 / BV Simulator
TerraTec Producer ¢+ | HIPPG Wave 2.2/ 2.3/ EVI) Simulater (vetwsim)
VB3 v | HIFPG Wave 2.2 / 2.3 / EVU Simulator (vstwsim23)
Waldorf + | MIPPG Wave 2.2 V6 Simulator {vstwsimd)

M ASynth Ml FPG Wave 2.2 V6 Simulator (vstwsimd23)

M ASynth (PluginConsultant) Ml 5_FM3x

M Battery - 54 channel professional drum sampler M saxLab

Figure 36: Plugln menu
Effect, Instrument, and MIDI Pluglns have different icons.

As you can see, this menu can become quite big; I haven’t done real stress tests yet whether some
Windows versions might go Ka-Boom! after more than, say, 500 entries. Be warned.

Builtin Plugins

Since V1.53, VSTHost also has some builtin Plugins; these are an integral part of VSTHost, but can
be used just like a PlugIn of the same functionality could be. When available, they are always put into
the first submenu of the Pluglns menu (see above):

% MIDI Modify
5 MIDI PassThru

Figure 37: Builtin PlugIns submenu

Currently, the following builtin Pluglns are available:

Audio PassThru

This is a very simple Plugln that just passes all audio data through to the next Plugln in the chain. Its
main purpose is to allow splitting or combining audio channels from various Pluglns and then treating
them as a unit; this can be accomplished on the Plugln's Chain After dialog (see “Chain After” on
page 59 for details). The Audio PassThru Plugln has some parameters:

P

2 P: Audic PassThru Program 0:

(=]l O aes]

Figure 38: Audio PassThru parameters

38

Channel By default, the Audio PassThru Plugln operates in Stereo mode (2 inputs, 2
outputs). For complex setups, it can be more convenient to have more
channels, since all incoming audio channels would otherwise be mixed down
to Stereo; this parameter allows to set the number of input and output
channels to 1 .. 20.

Volume Can be used to vary the output level of the Plugln. This effects all incoming
audio channels; setting up the incoming channels' volume separately can be
done on the Chain After dialog.

Delay

Delay is a very simple delay. No sound forming, it just ... delays the signal. Can be used as a simple
PlugIn Delay Compensation; if you got a Plugln that introduces a noticeable delay, you can delay the
output of the other Pluglns a bit (sample-accurate, if you wish). The following parameters are
available:

Type Specifies whether the delay time is given in samples, seconds, or beats.
Time The delay time in units of the Type parameter.

Feedback Feedback; -60dB means “off”.

Width Output width.

Volume Defines the overall output level of the Plugln.

Wet Level Level of the delayed signal.

Dry Level Level of the original input signal.

Input Spread Can be used to vary the incoming signal's Stereo spread.

Level to Parameter

This builtin Plugln is an extended version of the Audio PassThru builtin Plugln described above. It
can be used to convert a sound source’s output level into a parameter value. This can then be passed
on to other Pluglns through a Parameter->MIDI conversion. The following parameters are available:

Channels Can be used to vary the number of audio channels that are passed through the
builtin Plugln.
Volume Can be used to vary the output level of the Plugln. This effects all incoming

audio channels; setting up the incoming channels' volume separately can be
done on the Chain After dialog.

RMS Defines whether the Plugln outputs the RMS or maximum value of incoming
audio buffers.

Level This parameter always contains the current buffers’ level.

Max Level Contains the maximum level since the last time this parameter was reset

Mid/Side to Stereo

Mid/Side to Stereo is the companion to the Stereo to Mid/Side builtin Plugln (see below). It converts
an incoming Mid/Side signal pair into a stereo output signal. The following parameters are available:

Volume Can be used to vary the output level of the Plugln.

Spread Can be used to vary the adjust the incoming Side channel's level, thereby
changing the output's stereo spread

39

MIDI Modify

MIDI Modity is an extended version of the MIDI PassThru builtin Plugln (see below). Since some
MIDI configuration tasks are frequently necessary, and to make configuration easier and remotely
controllable, it has a set of parameters:

Force Channel

Allow Channel

Force MNote

Allow Mote

Transpose Note

0 =emitones

Figure 39: MIDI Modify parameters

Force Channel

Allow Channel

Force Note

Allow Note

Transpose Note

Can be used to force all incoming MIDI messages to a specific channel. The
default setting of “Keep” doesn't modify the channel.

Only lets MIDI messages with a specific channel pass. The default setting of
“All” doesn't filter messages on the other channels.

Note: Force Channel is executed before Allow Channel, so using them in
combination is not recommended — you can easily turn off al/ MIDI messages
this way.

Forces all incoming MIDI voice messages to a specific note. The default
setting of “Keep” doesn't modify the note number.

Only lets MIDI voice messages with a specific note number pass. The default
setting of “All” doesn't filter voice messages.

Note: Force Note is executed before Allow Note, so using them in
combination is not recommended — you can easily turn off a// MIDI voice
messages this way.

Can be used to transpose incoming MIDI voice messages up to 4 octaves in
both directions.

Using the parameters is a bit faster than setting up the Plugln's Filter and/or Transformation settings
(see “Filter Settings and Transformations” on page 44 for details), so if they are expected to change
more often, this Plugln should be used instead of the MIDI PassThru builtin Plugln (see below). In
addition, you can control the parameter settings with separate MIDI messages (see “MIDI ->
Parameter” on page 50 for details) for additional flexibility.

Note: of course, you can configure additional Filter and Transformation settings for this Plugln, too, if
the simple parameter set isn't sufficient for your needs. The Filters and Transformations are executed
before MIDI reaches the builtin Plugln.

MIDI PassThru

This is a very simple Plugln that just passes all MIDI data through to the next PluglIn(s) in the chain. It
can be used for setting up complex MIDI chains, where one Plugln should receive MIDI data from one
or more MIDI inputs and/or other Pluglns, but filtered in different ways. In this case, just put two or
more MIDI PassThru Pluglns before it and make sure that it only receives MIDI Input from them;
then, set the MIDI PassThru Plugln's Filter and/or Transformation settings (see “Filter Settings and
Transformations” on page 44 for details) to your heart's content.

40

Parameter PassThru

This is a very simple Plugln that just passes thru all parameter changes. This, in itself, is not really
useful at all, but: it can be used to set up complex MIDI translations. The Plugln offers 100
parameters. you can use its “MIDI->Parameter” window (see “MIDI -> Parameter” on page 50) to
map any incoming MIDI message to a parameter — and then use its “Parameter->MIDI” window (see
“Parameter -> MIDI” on page 55) to map the parameter to an entirely different MIDI message, which
can then be passed on to another Plugln.

Reverb

This is a simple reverb Plugln that's based on FreeVerb, which has been put into the public domain by
“Jezar @ DreamPoint”, originally to be found at www.dreampoint.co.uk — this was back in the year
2000; unfortunately, the site is long gone. I've added it as a “poor man's reverb” - it's quite handy if
you just want a bit of reverb for doodling around. Nearly as unoptimized as the original; the only
additions are that you can enter parameter values directly, it should work with varying sample rates
(the original has been created for 44.1kHz only), and it can handle stereo input signals (the original
simply converted them to mono).

Once you have loaded Reverb, simply use "Room size" to get the size of the room you want, and use
the "Wet level" and "Dry level" controls to balance the reverb as you see fit. "Damping" controls the
simulated "absorbency" of the room. When “Freeze mode” is selected, Reverb keeps playing the last
captured buffer. “Spread” sets a stereo input signal's spread, defaulting to Mono (compatible to the
original Freeverb).

If you can get hold of “Freeverb v3” sound banks, you should be able to load them into VSTHost's
built-in Reverb Plugln as well. The older version “Freeverb v2”, on the other hand, has a different set
of parameters, so sound banks for this version aren't usable. Saving, however, generates a different file
format, as VSTHost's Reverb has an additional parameter that allows Stereo input to be processed as
stereo with a varying spread.

Stereo to Mid/Side

This Plugln can be used to split an incoming stereo signal into its Mid (output channel 1) and Side
(output channel 2) components so that they can be treated separately. Its companion, the Mid/Side to
Stereo builtin Plugln (see above), can be used to convert the result back into a normal stereo output
signal.

The following parameters are available:

Volume Can be used to vary the output level of the Plugln.

Spread Can be used to vary the adjust the outgoing side channel's level, thereby
changing the input's stereo spread

Submixer

This is a Plugln that allows finer control over the mixing of sound sources (audio input as well as
linked Pluglns). Basically, it's a 20/5/2 mixer (up to 20 input channels, 5 busses, stereo main output)
with 3 parametric EQs per stereo channel, initially set up as a typical Lo/Mid/Hi EQ.

The main benefit over using an external Plugln like the CM X844 Plugln is that inputs are assigned
automatically to free channels if you add a link to another Plugln.

This Plugln is still slightly experimental.

Exit
Does what it says and terminates VSTHost. Without warning, as I might add; I hate “Are you sure?”
message boxes. I am sure. ©

41

http://www.dreampoint.co.uk/

Plugin Menu
PlugIn

Window »

Load Bank...

Save Bank

Save Bank As...
w Autosave Bank
v Reload Bank

Bypass Alt+B
Mute Alt+M
Chain After...

Unchain

Export XML...

Close Ctrl+F4

Program Mame. ..

Load Program...
Save Program As...

MNext Program Alt+H
Previous Program — Alt+P
Export Programs. ..

Programs 0-15 »

Figure 40: Plugln Menu

This menu is only visible if a Plugln window is currently selected (main, edit, parameter, MIDI <->
Parameter, or info window); more on these later in the “Toolbar” section on page 78. Right-clicking
on one of the Plugln windows (except for the Edit window) shows the same menu as a popup menu.

Window

This sub-menu lets you select (or open, if it isn’t opened yet) one of the possible windows of the
Plugln. Information on most of them can be found in the “Toolbar” section on page 78. The following
sub-menu entries deserve special treatment, however...:

Configure

This sub-menu entry can only be selected if it makes sense, i.e., if the Plugln requires any of the
settings that can be configured on the following window:

|E 2 Configure Plugin: SDelay ,-_"Eﬁ|

Fropeties

Irput 51 w | Channels

Output g1 s | Channels

Figure 41: Plugln Configuration Window

The following settings can be changed here, if possible:

42

Auto-Stereo

This check box can only be selected when the current Plugln has only one output channel. If checked,
VSTHost automatically expands the Plugln’s output to 2 identical pseudo-stereo outputs.

Double Precision Audio

This check box can only be selected for Pluglns that implement this feature. In the current version, this
is mainly usable for testing Pluglns that support processDoubleReplacing() for audio processing. In
this mode, VSTHost passes audio to the Plugln in double precision format (the much-hyped “64 bit
audio processing!!!1” ©). This, however, doesn’t necessarily mean that the output sounds “better” -
depending on the installed package, VSTHost might still use 32 bit audio processing internally; if so, it
just converts the samples to 64 bit before calling the Plugln and converts the result back. So, all you
get is a little performance degradation; that’s why I said it’s mainly for testing purposes.

But then... if you're using a lot of Pluglns that support double-precision audio, and you want to create
chains of them, the continuous conversion between 32- and 64-bit audio would cause more of a
performance degradation than running the whole chain with 64-bit double precision audio.

Starting with V1.45, VSTHost is also available in a 64-bit version (that's 64-bit audio, not 64-bit code;
the code may still be 32-bit... we live in interesting times <sigh>) that can be separately downloaded
from the web site mentioned on page 2 of this document. This version uses 64-bit signal processing
internally, which means that:
1. all buffers are twice as big as in the 32-bit version; each and every operation needs to move
twice as many bytes around,
2. if a Plugln does not support 64-bit audio processing, VSTHost now has to convert all buffers
to 32-bit before and after they are passed through the Plugin
... in short, it's slower and bigger than the 32-bit version.

While the overall sound quality might be a little bit better if 64-bit audio processing is used, I sincerely
doubt that anyone can hear this. VSTHost is not meant to be the main vehicle of a mastering studio,
where the additional quality might make a difference. Well, it's your decision... a contemporary high-
end machine surely has no problem with this version.

Speaker Configuration

If the Plugln supports setting the speaker configuration, and thus the usable audio channels, you can
configure the Plugln's input and output speaker configuration here.

43

MIDI Settings

Selecting this menu entry opens a window that allows to configure the Plugln's MIDI properties.

MIDI Input Devices

2 M: ASynth B@ﬁ

MIDI Input Devices | MIDI Output Devices | Remote Control Port

Select all used devices

* Al loaded MIDI Input Devices *
* Keybaoard Bar ~

" Joysticks =

* Midi Player =

[Filtter Sattngs... 1 [Transformations...

[ok || Abbrechen |

Figure 42: Plugln MIDI Parameters Window, Input Devices Tab

On the MIDI Input Devices tab, you can define the MIDI Input Devices used by this Plugln; the
default is to react on messages from all loaded devices. The Keyboard Bar, configured joysticks, the
MIDI Player, the SysEx window, and the computer keyboard are treated like MIDI Input devices here.
You can select one of them by simply clicking on it; to select a range, click on the first and then shift-
click on the last; to add or remove a specific device, control-click on it.

Note: the list box can contain devices with “(--)”” added to their names. These are MIDI devices that
VSTHost is configured to use, but which aren't available (presumably unattached USB devices, or
devices on another PC if using a “stickware” configuration).

Filter Settings and Transformations

The “Filter Settings...” and “Transformations...” buttons open a secondary dialog (both open the same
dialog, they just start it on a different tab):

44

Filter Settings

Filter Settings and Transformations

| Fiter Sattings | Special Fiter | Transfommations

Voice

[[] Program Change
[hanne Pressure
[Pich Bend

Channels

[| R
Oz Os
Eas E7
4 [s

s [El13
010 114
Bn E1s
11z 118

System Common

[5ysEx

[CIMTC Guarter Frame
[[] Song Postion Poirter
[[] Song Select

[[] Tune Request

System Realime
[Cleck

[Start

] Continue

O Siep

Active Sensing
Systern Reset

0K | [Apbrechen |

Figure 43: Filter Settings and Transformations, Filter Settings Tab

Here, you can select MIDI Messages that are filtered, i.e., they are removed from the MIDI stream that
is sent to this specific Plugln. Common usages include:
e Disallowing messages from specific MIDI channels; this can be used to separately control up

to 16 Pluglns from a single MIDI Input Device

e Preventing Program Change messages to change the Plugln’s program

e Inhibiting certain controllers

e Preventing SysEx messages to reach the Plugln

If you want to filter only some Note On/Off messages, you can define them by pressing the “...”
Button on the right of the “Note On” check box, which opens the following sub-dialog:

Filter Notes

00 C#-2
00z D-2
003 D#-2
004 E-2
005: F-2
D06 Fit-2
007 G2
006: G#-2
009: A2
010 Ag-2
01:B2
0z cAa
013 Ca#
014:04
015 D1
016 E4
M7:F
0186 F#-1
019: G
020 G#1

A AW

000: G2 ~

021 Ar1 =

Figure 44: Filter Notes Dialog

Here, any combination of Note On/Off messages can be filtered.

45

If you want to filter only some Control Change messages, you can define them by pressing the “...”
Button on the right of the “Control Change” check box, which opens the following sub-dialog:

Filter Controllers

000: Bank Select -
001: Modulation [
002: Breath

o003

004: Foor Contraller

005: Fomanmenta Time

006

007: Valume

008 Balance

003

010: Fan

011: Expression

012 Effect 1

013 Effect 2

04

05

016: General Purpose 1

017: General Purpose 2

018 General Purpose 3

039 General Purpose 4

oz

[174] =

L5

Figure 45: Filter Controllers Dialog

Here, any combination of Continuous Controller messages can be filtered.

Special Filter

Filter Settings and Transformations

| Fiter Settings | Special Fiter | Transfomations

Type #
*Maone -]]

Froam

Bits +
LI}
0K | [Apbrechen |

Figure 46: Filter Settings and Transformations, Special Filter Tab

On this tab, you can define special MIDI filters that aren't possible with the “normal” filter page (see
above). It uses the same logic as the “MIDI -> Parameter” window (see page 50 for details); the fields

are described there.

While this window allows to set up very flexible filters that can filter MIDI messages in really extreme
ways, there's a downside — setting up filters this way is quite a bit slower than with the “normal”
filtering mechanism, so it is better to use that for simple filtering purposes.

Of course, this becomes less important if your computer is fast enough. Hey, it's just MIDI we're
talking about here — 3000 bytes per second... unless it comes from a MIDI-over-IP or virtual MIDI

cable, of course.

46

Transformations

Filter Settings and Transformations [&J

| Filter Settings I Special F|rter| Transformations

Velocity Curve Channel
Predefined Curves: | v | |* No Channel Selection * - |

Transposition

* None * v| L

Toggling Notes

All Notes Toggle

Load...
Save As..

0K || Abbrechen

Figure 47: Filter Settings and Transformations, Transformations Tab

Here, you can define MIDI transformations.

Note: transformations are done affer the MIDI filters have done their work; the filters work on the
original message, not on the result of any transformation.

The following transformations can be done:

Velocity Curve

This transformation is only valid for Note On messages. The predefined curves that can be loaded
deal with various standard situations, such as adapting an external MIDI Master Keyboard's velocity
curve to your personal preferences. You can, however, set up completely weird velocity
transformations with this.

Each curve is defined through a set of nodes. Each of these nodes is shown as a little rectangle on the
curve. There are two types of nodes: linear and spline nodes. A linear node is just that — it creates a
straight line between itself and the adjacent nodes. A spline node, in contrast, creates a curved line
between itself and the adjacent nodes. The two node types are shown in different colors — grey for
linear nodes and cyan for spline nodes.

You can insert a node by double-clicking somewhere in the area. The type of the node can be toggled
by left-clicking on it, and then right-clicking it, too, without releasing the left mouse button first. That
may sound complicated, but it's relatively easy to do it. Unless you're a switched Mac user who has a
handicapped one-button mouse, hee hee.... ahem.

Clicking on a node shows its current position. You can drag the selected node around freely in the
range set by its left and right neighbors.

A node can be deleted by left-clicking on it and pressing the Del key on on keyboard.
Note: the velocity transformation can also be used to turn notes off — it allows to change the velocity

to 0, which is interpreted as a Note Off message. This is intentionally possible, and if you drag a node
to the lowest possible position, “Off” is shown to make it clear.

47

Channel

This transformation is valid for all “normal” MIDI messages that carry channel information. Using it,
you can change the message's MIDI channel to a fixed value.

Transposition

This transposition is valid for all messages that have a note information — Note On, Note Off, and
Polyphonic Aftertouch. Messages of this kind can be transposed up to 4 octaves in both directions.
Toggling Notes

This transformation can be done on Note On messages.

Its main purpose is this: sometimes, you may want to trigger playback of a sample by pressing a key.
Normally, you'd have to keep the key pressed as long as you want the sample to play. This may not fit
your workflow (say, you're a DJ and normally got your fingers somewhere else ©); in Toggle Mode,

you press the key once to start playback and another tine to stop it; technically, the Note Off messages
are suppressed and the second Note On message is transformed into a Note Off message.

This can be done in two ways:
1. globally, i.e., for all Note On/Off messages
2. Dby pressing the “...” button, you can select single notes

Now let's carry on with the other tabs on the “MIDI Settings” window we started to describe on page
44...

MIDI Output Devices

2 M: ASynth B@ﬁ

| MIDI Input Devices | MIDI Output Devices | Remote Control Port

Selact al used devices

[Filter Sattngs...] [Transformations. ..

[ok || Abbrechen |

Figure 48: Plugln MIDI Parameters Window, Output Devices Tab

On the MIDI Output Devices tab, you can define the MIDI Output devices that this Plugln sends
MIDI messages to. Normally, it sends to all loaded MIDI Output Devices. You can select one of them
by simply clicking on it; to select a range, click on the first and then shift-click on the last; to add or
remove a specific device, control-click on it.

48

The “Filter Settings...” and “Transformations...” buttons open a secondary dialog (both open the same
dialog, they just start it on a different tab). See “Filter Settings and Transformations” on page 44 for
details.

Note: in earlier versions, MIDI routing between Pluglns was set up on this tab; this is now done with
MIDI links (see “Chain After” on page 59 for details).

Note 2: the list box can contain devices with “(--)” added to their names. These are MIDI devices that
VSTHost is configured to use, but which aren't available (presumably unattached USB devices, or

devices on another PC if using a “stickware” configuration).

Remote Control Port

2 M: ASynth ot
MIDI Input Devices | MIDI Output Devices | Femote Control Port
nput Port: |2 il a | [Exclusive [Load... | [Save...]
Type # Chn | From | To | Bits| kil -» Parameter Fram To
*More™ @&] [4 i v Progeam & 0.000% 1.000
OK | [Abbrechen

Figure 49: Plugin MIDI Parameters Window, Remote Control Port Tab

On the Remote Control Port tab, you can define the Plugln’s Remote Control. In addition to passing
MIDI messages to the Pluglns, some of the Plugln’s basic operations can be remotely controlled by
MIDI messages, too. Here, you can select one of the opened MIDI Inputs or one of the MIDI Pluglns
chained before this one to control the Plugln, or one of the available special entries:

Name Comment

All Loaded MIDI Input Input from any of the opened physical MIDI Input devices is used.

Devices Note: if used with a synth Plugln, the Exclusive check box should
remain unchecked in this case, otherwise the Plugln won't see a
single MIDImessage.

Midi Player Input from the MIDI Player is used.

Keyboard Bar Input from the Keyboard Bar is used.

Joysticks Input from attached joysticks is used.

SysEx Window Input from the SysEx window is used.

All linked Pluglns Input from any Plugln that is chained before the remotely
controlled Plugln is used.

The default setting of “---* means that there’s no Remote Control port.

49

If the Exclusive check box is checked, all MIDI messages from this port are used for Remote Control
only. If not, the Plugln sees them, too (unless “Kill” is selected in the actions list below)..

Below the port, you can configure the action for each of the Plugln’s settings that is remote-
controllable. This list is of the same type as the one used in the MIDI -> Parameter Mapping
window (see “MIDI -> Parameter” on page 50 for details on editing it); the difference is that the From
and To settings on the Parameter side represent the full range for the parameter (given below)
expressed as a floating-point value in range 0.0 .. 1.0. Unless you’re really sure what you’re doing, it
is probably a good idea to leave these settings alone.

Note: the list box can contain devices with “(--)” added to their names. These are MIDI devices that
VSTHost is configured to use, but which aren't available (presumably unattached USB devices, or

devices on another PC if using a “stickware” configuration).

Currently, the following Plugln parameters can be remotely controlled:

Parameter Type Range Comment
Program Numeric | Plugln- Selects one of the possible programs of the Plugln.
Dependent

Bypass Switch 0-1 Turns Bypass on or off.

Mute Switch 0-1 Turns Mute on or off.

Close Switch 0-1 Closes the Plugln if the value is in the upper range.

Next Program Switch 0-1 Switches to the next program if the value is in the
upper range.

Previous Program | Switch 0-1 Switches to the previous program if the value is in
the upper range.

MIDI -> Parameter

Selecting this menu entry opens a window that allows the mapping of incoming MIDI messages to
VST Automation parameters for the Plugln. Most contemporary Pluglns can handle incoming MIDI
Controller messages themselves, in more or less sophisticated ways; for those that cannot, this dialog
and its companion below (“Parameter -> MIDI”’) have been added.

@ 2 M->P: ASynth MIDI <-> Parameter Mapping BE <)
Type # Chn | Fiom = To |Bits Kill| = Parameter From | To _DK
“More ™ § 3]] N Oscl Wave $0000%1.000% -
B B

Figure 50: MIDI -> Parameter Mapping Window

This is one of the more complex windows in VSTHost, since there are quite a lot of possibilities.

Nearly all of the fields here are spin controls; i.e., they got a spin button on their right side that allows
scrolling through the possible values by clicking in on the upper/lower half. Dragging the mouse up or

50

down allows to change the speed at which the selection changes. Wherever possible, clicking the item
with the right mouse button offers a context menu with all possible settings. Some of the fields can be
edited directly by double-clicking them.

As soon as you change the value of the last line’s MIDI Type from *None* to anything else, a new
None line is added to the list. This allows the definition of as many lines as you like. All lines
containing a type of *Learn* or *None* are discarded when the window is closed with OK.

The window has two parts; the left part defines the incoming MIDI message(s), the right part defines
which parameter is to be modified by them, and how. The two parts are discussed below.

There are some additional buttons on the window. Reset simply resets the list. Load... can be used to
load a new mapping from a file, whereas Save... can be used to save the current mapping to a file.
Attention: VSTHost does not check the Plugln type when loading a mapping from a file; since only
the Parameter number is saved, mappings created for a completely different Plugln will be happily
loaded, but may result in undesirable mappings, since each Plugln has its own idea about which
parameter is at which position.

Incoming MIDI Message
This side defines the incoming MIDI message to be mapped to a parameter. It consists of the
following fields:
Type This field defines the type of the MIDI message(s) processed for this line. Aiming
to be as versatile as possible, there are quite a lot of choices here:
Learn If this type is selected, VSTHost uses the next
incoming MIDI message to define the type of the
MIDI message.
None This is the default value; lines of this type are ignored
by MIDI processing.
Bank React on an incoming CC#0 (and potentially CC#32)
message. This can be either a 7-bit or 14-bit message.
Program React on an incoming Program Change message.
CC React on an incoming Continuous Controller

message. If the controller number is below 32, this
can be either a 7-bit or 14-bit controller.

RPN React on an incoming RPN message bundle. Both
Increment/Decrement and Data Entry are processed.

NRPN React on an incoming NRPN message bundle. Both
Increment/Decrement and Data Entry are processed.

Pitch React on an incoming Pitch Wheel message

Note On Key React on an incoming Note On message’s key. # in
this case defines the velocity.

Note On Velocity React on an incoming Note On message’s velocity. #
in this case defines the key.

Note Off Key React on an incoming Note Off message’s key. # in
this case defines the velocity.

Note Off Velocity React on an incoming Note Off message’s velocity. #
in this case defines the key.

Note On/Off Key React on an incoming Note On/Off message’s key. #

in this case defines the velocity, where Note Off is
interpreted as velocity 0.

Note On/Off Velocity React on an incoming Note On or Off message’s
velocity, where Note Off is interpreted as velocity 0. #
in this case defines the key.

Poly Aftertouch React on an incoming Polyphonic Aftertouch
message’s pressure. Not many attached keyboards
will be able to deliver this. # in this case defines the

51

key.

Poly Aftertouch Key React on an incoming Polyphonic Aftertouch
message’s key. Not many attached keyboards will be
able to deliver this. # in this case defines the pressure.

Channel Pressure React on an incoming Channel Pressure message.

Clock This, actually, isn’t a MIDI message; VSTHost can
determine the clock speed from a set of incoming
MIDI Clock (F8) realtime messages, and use this as
an input value for all kinds of MIDI <-> parameter
operations. The From and To fields are set to
VSTHost’s minimum and maximum clock speeds in
this case.

Start, Continue, Stop These correspond to the MIDI Realtime messages of
the same name. Since they can only send exactly one
value (1), they aren’t really usable for MIDI <->
Parameter conversions, unless setting the parameter
triggers an action, but they can be very useful for
Remote Control (see “Remote Control Port” on page
19).

Timer This isn't a MIDI message; it represents a running
timer which has the number of passed milliseconds
since the last invocation as value. Works best if the
outgoing parameter uses the Relative mode; plus, it
requires a companion that resets the timer (a Note On
message, for example) to really make sense.

Note: this is a low-resolution timer, called each time
the UI is refreshed (roughly every 50 ms in the default
configuration).

Then, there are the “CC Relative” types; these are not part of the official MIDI

specification, but have been added by some companies to augment their

products’ capabilities. They were implemented to use the new features
provided by rotary encoders, something that simply wasn’t available when the

MIDI standard was created. Using these encoders, you can pass relative

controller changes to the program. This is a very nifty feature — you can send

“increment the value a little” or “decrement the value a little more” messages

from an external controller. Unfortunately, there’s no standard for this kind of

message, so just about each major player did it in his own way... that’s why the
modern controllers that can send Relative CC (for example, Behringer BCR-
2000/BCF-2000, Doepfer Pocket Dial) normally provide more than one way to
send them. Since I happen to own a Behringer BCR-2000, the types below

correspond to the BCR-2000’s “Relative 17, “Relative 27, and “Relative 3”

modes in their order.

CC Relative 2C Relative changes are sent as 2’s-complement
numbers. In 7-bit mode, bit 6 is the sign bit, and in
14-bit mode, bit 13 is the sign bit. This is the mode
used by Steinberg products, for example.

CC Relative Bin Relative changes are sent as binary values, with an
offset (64 in 7-bit mode and 2048 in 14-bit mode).
CC Relative SB Relative changes are sent with a dedicated sign bit; in

7-bit mode, bit 6 is the sign bit, and in 14-bit mode,
bit 13 is the sign bit. If set, the number is negative.
This is the mode used by Apple/eMagic Logic, for
example.

An additional set of “specials” has been added for the Mackie HUI, which has a

very unusual MIDI implementation:

HUI Fader React on an incoming HUI fader value.

52

HUI Encoder React on an incoming HUI encoder value; this also

deals with the Jog Wheel.
HUI Switch React on an incoming HUI switch press or release.
Another very special one is
Scan Code which is not really a MIDI message.

VSTHost uses this message type to pass computer
keyboard events through the MIDI—Parameter
mechanism.
For some types, an additional number can be given; for example, for CC
messages, this is the controller number, while it is the note number for Note
On/Off and Polyphonic Aftertouch messages. *All* can be used to react on the
full range indiscriminately.

Chn Can be used to set the MIDI channel. *All* can be used to react on the full range
indiscriminately.

From These define the MIDI value range. For 7-bit types, this is normally 0..127

To (except for the relative CC types, where it is 0..64), whereas it is 0..16383 for 14-

bit types (except for the relative CC types, where it is 0..8192). This can be used
to further narrow the range of incoming messages; you can, for example, decide to
only process Note On messages with a velocity between 64 and 127.
If the range is reversed (i.e., To is lower than From), the values between To and
From are excluded from processing; i.e., defining the range as 126..64 would only
process incoming values of 0..63 and 127.
Bits For some types, you can define whether they are treated as 7-bit or 14-bit entities
Kill This flag defines whether the MIDI message is “killed”, i.e., removed from the
MIDI events list. This defaults to yes; normally, if you transform a MIDI message
into a parameter, you won’t need to pass the MIDI message to the Plugln any
more. If you want to pass the MIDI message anyway, a simple mouse click on the
“Killing field” allows this.

Translation to...

This field, which has the header text “->", can be used to define a complex set of changes — it can be
used to create a conjunction. If you click into this field, a “+” sign appears, and the outgoing
parameter change fields (see below) disappear. In this mode, the incoming MIDI message is parsed,
but is not used to change a parameter; VSTHost merely remembers whether the last message of the
given type and channel would match the other criteria.

This result is then ANDed with the next line. Only if both lines' criteria are met, the incoming MIDI
message is translated into a parameter.

Note: you can set up as many ANDed lines as you like, but they have to be followed by a line which
finally determines which parameter is to be changed. If this final line is missing, all ANDed lines are
discarded when the setup is saved.

Outgoing Parameter Change

This side defines which of the Plugln’s parameters is to be modified by the incoming MIDI message.
It consists of the following fields:
Parameter Here, you can select one of the Plugln’s VST Parameters.
If *Learn* is selected, VSTHost uses the parameter from the Automation value
change that comes in; this allows you to select *Learn*, then switch to the
Plugln’s Editor window, twiddle the desired knob there, and (provided this is an
automatable parameter) instantly have the corresponding parameter selected.
Mode Here, you can define the output mode.
The following modes are currently defined:

Set In this mode, the incoming MIDI message’s value range is

53

From
To

Toggle

Relative

From,
To

Catch

Filter

Proportional

converted into a possible range of 0.000...1.000, which is then
expanded into the value range defined by From and To.

If the range is reversed (i.e., To is lower than From), the output
values are reversed, too; i.e., by specifying a range of 1.000..0.000
here, an incoming value of 0.1 would result in a parameter value of
0.9 sent to the Plugln.

In this mode, the incoming MIDI message's value is ignored;
instead, for each matching MIDI message, VSTHost toggles the
parameter between the values given in From and To. This can, for
example, be used to start and stop playback of a sample by
pressing a foot switch twice.

As soon as you set the mode to Toggle, VSTHost will try to set up
the Incoming MIDI message part to sensible values for the most
likely application — a foot switch that sends CC messages.

Similar to Set mode, but after conversion the output parameter
value is not confined to the range set by From and To; instead, the
whole parameter range is used.

The main purpose of this mode is to allow fine-tuning a parameter
by setting To to a smaller value than 1.000; using 0.100, for
example, leads to a 10x finer resolution.

This mode works best with Relative CCs, but isn't limited to them.

In these modes, the incoming MIDI message's value is ignored;
instead, for each matching MIDI message, VSTHost sends the
configured From or To value. This can, for example, be used to
trigger a special value whenever a Note On Velocity message
came in.

Like Set, but the outgoing parameter is only used if the internally
used value lies between the previous and current value.
This can be used to prevent parameter jumps.

In this mode, the incoming MIDI message is filtered; it is not
converted into a parameter. If the Kill flag is set, this mode is
identical to the special filter settings (see “Special Filter” on page
46). If it isn't set, the message still reaches its target as a MIDI
message.

Similar to Set mode, but value changes are done proportionally.
Like Catch, this is intended to prevent, or at least minimize
parameter jumps, but incoming value changes take immediate
effect.

Here, you can select the value range that is sent to the Plugln. See the discussion
of Mode above for the meaning of the fields.

54

Parameter -> MIDI

Selecting this menu entry opens a window that allows the mapping of incoming VST Automation
parameter changes to outgoing MIDI messages for the Plugln. Most contemporary Pluglns can handle
incoming and outgoing MIDI Controller messages in more or less sophisticated ways; for those that
cannot, this dialog and its companion above (“MIDI -> Parameter”) have been added.

2 P->M: ASynth MIDI <-> Parameter Mapping =)

Parameter From To @ - Type i Chn | From | To |Bis 0
Oscl Wave $0.000%1.0008 “Mone ™ @ '] 'l '] 'l

Figure 51: Parameter -> MIDI Mapping Window

See “MIDI -> Parameter” above for a general description of the editing possibilities on this window.

The window has two parts; the left part defines the incoming VST Parameter change, the right part
defines which set of MIDI messages is to be generated by them, and how. The two parts are discussed
below.

There are some additional buttons on the window. Reset simply resets the list. Load... can be used to
load a new mapping from a file, whereas Save... can be used to save the current mapping to a file.
Attention: VSTHost does not check the Plugln type when loading a mapping from a file; since only
the Parameter number is saved, mappings created for a completely different Plugln will be happily
loaded, but may result in undesirable mappings, since each Plugln has its own idea about which
parameter is at which position.

Incoming Parameter Change

This side defines which of the Plugln’s parameters should generate a (set of) MIDI message(s). It
consists of the following fields:
Parameter Here, you can select one of the PlugIn’s VST Parameters.
If *Learn* is selected, VSTHost uses the parameter from the Automation value
change that comes in; this allows you to select *Learn*, then switch to the
Plugln’s Editor window, twiddle the desired knob there, and (provided this is an
automatable parameter) instantly have the corresponding parameter selected.
From Here, you can select the value range that’s accepted from the Plugln. The defined
To maximal value range for VST parameters is 0.000...1.000.
If the range is reversed (i.e., To is lower than From), the values between To and
From are excluded from the generation; i.e., defining the range as 1.000..0.500
would only process incoming values between 0.000 and 0.49°.

Translation to...

This field, which has the header text “->”, can be used to define a complex set of changes — it can be
used to create a conjunction. If you click into this field, a “+” sign appears, and the outgoing MIDI
message fields (see below) disappear. In this mode, the incoming parameter change is parsed, but is

55

not used to create a MIDI message; VSTHost merely remembers whether the last change of the given
parameter would be in the given range.

This result is then ANDed with the next line. Only if both lines' criteria are met, the incoming
parameter change creates a MIDI message.

Note: you can set up as many ANDed lines as you like, but they have to be followed by a line which
finally determines which MIDI message is to be generated. If this final line is missing, all ANDed
lines are discarded when the setup is saved.

Outgoing MIDI Message

This side defines the (set of) MIDI Message(s) generated by the parameter change. These messages
are then treated just like original MIDI messages originating from the Plugln — they can be sent to all
configured MIDI Outputs, or to another Plugln (where they could even be modified to VST Parameter
changes again, allowing rather bizarre inter-Plugln modulations). It consists of the following fields:
This field defines the type of the MIDI messages. Aiming to become as versatile
as possible, there are quite a lot of choices here:

Type

Learn

None
Bank

Program
CC

RPN

NRPN

Pitch

Note On Key
Note On Velocity
Note Off Key
Note Off Velocity

Note On/Off Key

Note On/Off Velocity

Poly Aftertouch Key

Polyphonic
Aftertouch

Channel Pressure
Clock

If this type is selected, VSTHost uses the next
incoming MIDI message to define the type of the
MIDI message (this is a bit of a hack; an incoming
MIDI message is used to define the type of an
outgoing MIDI message... oh well, it works...).

This is the default value; lines of this type are ignored
by MIDI processing.

Creates an outgoing CC#0 (and potentially CC#32)
message. This can be either a 7-bit or 14-bit message.
Creates an outgoing Program Change message.
Creates an outgoing CC message. This can be either a
7-bit or 14-bit message.

Creates an outgoing RPN message bundle.

Creates an outgoing NRPN message bundle.

Creates an outgoing Pitch Wheel message

Creates an outgoing Note On message’s key. The
velocity is defined by #.

Creates an outgoing Note On message’s velocity. The
key is defined by #.

Creates an outgoing Note Off message’s key. The
release velocity is defined by #.

Creates an outgoing Note Off message’s velocity. The
key is defined by #.

Creates an outgoing Note On or Off message’s
velocity. The key is defined by #. An outgoing
velocity of 0 creates a Note Off message, other values
create a Note On message.

Creates an outgoing Note On or Off message’s key.
The release velocity is defined by #. An outgoing
velocity of 0 creates a Note Off message, other values
create a Note On message.

Creates an outgoing Polyphonic Aftertouch message’s
key. Not many attached keyboards will be able to
deliver this. The aftertouch pressure is defined by #.
Creates an outgoing Polyphonic Aftertouch message.
Not many attached keyboards will be able to deliver
this. The key is defined by #.

Creates an outgoing Channel Pressure message.

This doesn’t really make much sense — although a

56

specially crafted Plugln might put it to use. The
parameter value, whatever it is, triggers a single MIDI
Clock (F8) realtime message.

Start, Continue, Stop These also don’t make much sense in a normal
environment. The parameter value, whatever it is,
triggers a single MIDI Start, Continue, or Stop
realtime message.

Then, there are the “CC Relative” types; these are not part of the official MIDI

specification, but have been added by some companies to augment their

product’s capabilities in a makeshift, non-standardized way. They were
implemented to use the new features provided by rotary encoders, something
that simply wasn’t available when the MIDI standard was created. Using these

encoders, you can pass relative controller changes to the program. This is a

very nifty feature — you can send “increment the value a little” or “decrement

value a little more” messages from an external controller. Unfortunately,

there’s no standard for this kind of message, so just about each major player did

it in his own way... that’s why the modern controllers that can send Relative

CC (for example, Behringer BCR-2000/BCF-2000, Doepfer Pocket Dial)

normally provide more than one way to send them. Since I happen to own a

Behringer BCR-2000, the types below correspond to the BCR-2000’s “Relative

17, “Relative 27, and “Relative 3” modes.

CC Relative 2C Relative changes are sent as 2’s-complement
numbers. This is the mode used by Steinberg
products, for example.

CC Relative Bin Relative changes are sent as binary values, with an
offset (64 in 7-bit mode and 2048 in 14-bit mode).
CC Relative SB Relative changes are sent with a dedicated sign bit; in

7-bit mode, bit 6 is the sign bit, and in 14-bit mode,
bit 13 is the sign bit. If set, the number is negative.
This is the mode used by Apple/eMagic Logic, for
example.

An additional set of “specials” has been added for the Mackie HUI, which has a

very unusual MIDI implementation:

HUI Fader Set one of the HUI Faders;
this might or might not work, since the original HUI
also needs a special “keepalive” MIDI protocol which
VSTHost doesn't implement (yet) for the motor faders

to move.
HUI Encoder/LED Sets the LEDs around an encoder.
HUI Switch/LED Sets one of the HUI LEDs, or turns on a relay.
For some types, an additional number can be given; for example, for CC

messages, this is the controller number, while it is the note number for Note
On/Off Velocity and Polyphonic Aftertouch messages.

Chn Can be used to set the MIDI channel.
From These define the MIDI value range. For 7-bit types, this is normally 0..127
To (except for the relative CC types, where it is 0..64), whereas it is 0..16383 for 14-

bit types (except for the relative CC types, where it is 0..8192). This can be used
to further narrow the range of incoming messages; you can, for example, decide to
only process Note On messages with a velocity between 64 and 127.
If the range is reversed (i.e., To is lower than From), the values between To and
From are reversed, too.

Bits For some types, you can define whether they are treated as 7-bit or 14-bit entities

Permanent
This menu entry is reserved for future use. Just ignore it ©

57

Load Bank

Selecting this menu entry opens a dialog where you can load a program bank (normally a file with
extension “.fxb”) into the current Plugln. Once you specify one and save the performance, VSTHost
loads this bank into the Plugln automatically whenever the performance containing the Plugln is
loaded. If the Plugln banks are saved automatically (see “Autosave Plugln Banks” on page 67 for
details), VSTHost treats this as an import; as soon as the performance is saved, the loaded bank is
saved into VSTHost’s data directory for the current bank, and this copy is used from then on.

For VST3 Pluglns, VSTHost can also load the VST3 standard file format (with extension
“.vstpreset”).

Save Bank

Selecting this menu entry saves the current Plugln’s program bank into the file. If there is no current
program bank defined for the Plugln (i.e., no Load Bank operation has been done before), it acts like
Save Bank As.

Save Bank As

Selecting this menu entry opens a dialog where you can select a new file name (normally a file with
extension “.fxb”) to save the current Plugln’s program bank into.

Since V1.53, VSTHost defaults to the .vstpreset format for VST3 Pluglns, but this can be changed to
fxb format; this, however, is no true VST 1/2 bank file, but an encapsulated .vstpreset-format file.

In both cases — the “banks” created by VST3 Pluglns are in reality single presets; I haven't found out
yet how to get the Pluglns to save complete banks. I'm not even sure whether this is possible at all.

Autosave Bank

This menu entry defines whether the Plugln's program bank is automatically saved with the
performance. Initially, it is checked; however, there may be circumstances where you don't want this
to happen. In this case, turn it off.

Reload Bank

This menu entry is nearly synonymous to “Autosave Bank® above, but it covers the other way — if it is
checked, the Plugln's program bank is automatically loaded when the Plugln is part of a performance
that's just being loaded. Initially, it is checked; however, there may be circumstances where you don't
want this to happen. In this case, turn it off.

Bypass

Selecting this menu entry toggles the Bypass mode for the effect on and off. In contrast to Mute (see
below), bypassing an effect doesn’t turn off the whole chain, since all effects that are chained after the
bypassed one still receive its input.

Note: bypassing an effect does not turn it off; it still receives input, and it still generates output (which
is silently discarded), since it has to deliver the correct output as soon as Bypass is turned off again.
So, no performance gain here ©.

In V1.44, this behavior has been refined a bit; if the Plugln reports that it can be bypassed (i.e., if
canDo(“bypass”) returns 1), VSTHost calls the Plugln’s setBypass() method to let it define whether
bypassing turns processing off completely or whether the Plugln does a “soft bypass” on its own.

Mute

Ah yes, a very important menu entry. Selecting this (un)mutes the current effect. In contrast to Bypass
(see above), this completely mutes the effect’s output; this means that all effects that are chained to the
muted one receive only silence as input.

58

Note: muting an effect does not turn it off; it still receives input, and it still generates output (which is
silently discarded), since it has to deliver the correct output as soon as Mute is turned off again. So, no
performance gain here ©.

In V1.44, this behavior has been refined a bit; if the Plugln reports that it can be bypassed (i.e., if
canDo(“bypass”) returns 1), VSTHost calls the Plugln’s setBypass() method to let it define whether
bypassing turns processing off completely or whether the Plugln does a “soft bypass” on its own.

Chain After

Selecting this menu entry allows to define Plugln Chains; a chain, in VSTHost, is a sequence of
Pluglns that are linked together.

The {In} built-in Plugln provides audio input from VSTHost to a Plugln (unless it has no inputs), then
the Plugln's output is passed on to the next element(s) in the chain, and so on, until the {Out} built-in

PlugIn has been reached; this PlugIn’s output generates the real VSTHost audio output.

Note: versions earlier than V1.46 used a rather complicated setup with Send and Insert links; this is
not necessary any more, since there are dedicated audio input and output Pluglns.

You can set up complicated setups this way. Each Plugln can be linked to a multitude of other Pluglns.

Selecting the Chain After menu entry opens the following dialog:

7: CMX844: Chain after... X
ﬁﬂ' Enging Input

B2 BizuneVST

ora
s Crystal
(=g JKSynth

Figure 52: Chain Plugln After Dialog

This dialog lists all Pluglns that the current Plugln can be “chained after”, or “linked to”. It does not
include Pluglns that include the current Plugln in their predecessor chains, because that would lead to
recursive setups — and this would kill VSTHost.

There are some buttons available for each entry:

@ - this button is used to link the current Plugln’s Audio channels after the selected one. Selected
Pluglns look like this:

@02 Bizune\ST

The button has changed to 7, and the line is shown in a different color. This button is only available
if the PlugIn can deliver audio output.

@ - this button is used to link the current Plugln’s MIDI Input after the selected one. If selected, any
MIDI output generated by the selected Plugln is sent to the current Plugln (unless it is filtered — see

,Filter Settings and Transformations‘ on page 44 for that). Selected Pluglns look like this:
The button has changed to %, and the line is shown in a different color. This button is only available
if the current Plugln can accept MIDI input.

59

o the Plugln, the line color is a mixture between the two:

&7 4: Mantragora

- this button is used to define the Input Channel assignment for the link. You can assign the
chained PlugIn’s output channels to the current Plugln’s input channels here. Here’s a more
complicated setup:

Assign Plugin Input Channel
Flugln Input Source ~
Monaln 1 *Mo Channel Selection * -l
Monain 2 *No Channel Selection = o
Maonaln 3 * Mo Channel Selection * -

Manaln 4 *No Channel Selection ™

Monaln & *MNo Channel Selaction ®

Monaln & *“No Channel Selection *

Manaln 7 *No Channel Selection *

Monaln § *No Channel Selection *

Stereoin 1 Left *MNo Channel Selaction *

Sterecin 1 Right *Mo Channel Selection *

Steraoin 2 Lefl [Right Qut - (L
Stereoln 2 Right Left Out

Sterecin 3 Left *No Channel Selection *

Stereoln 3 Right *Mo Channel Selection® -

Figure 53: Assign Chained Effect Input Channels Dialog

This example is taken from the chain between 4: Mantragora.dll and 7:¢cmx844.dll in the following
VSTHost performance:

@ VsTHost 10: Big Mix - Master =X
Fle Engne Devices View Window Hep

|| Big Mix MEZE (2 e0oE S % | e h| 1200em A (HEB N = ®

(MW« me » I »wW L 0.000 /4814 ¥ |2 =] = & &

0048

Ready 39.1% S0d8 |

Figure 54: complicated setup with multichannel mixer

Then, there’s a little slider that allows to define the level passed through this link; if, for example, you
want to chain a reverb Plugln after an Instrument Plugln, you would define the link as a Send Link and
reduce the level in this link to, say, -10dB. In this way, both the original instrument and the reverb are
heard, but the reverb contributes much less to the overall audio output.

60

Note: if you already linked some Pluglns, you can activate the “Chain After” dialog of the target
Plugln by double-clicking on a link line on the main window.

Unchain

This is a bit tricky... the Chain After dialog can be used to set up the Plugln(s) that a Plugln is linked
to. Deselecting the link on that dialog removes it, breaking the chain if there’s any other Plugln linked
to the current one.

Selecting the Unchain menu item, however, removes all links to and from the current Plugln — but it
leaves the rest of the chain intact and “glues” predecessors and successors together. That is, all
predecessors and successors remain linked, just the current Plugln is entirely removed from the chain.

Note: the effect can be quite dramatic... if you unchain Plugln 7: CMX844 from the performance
shown above, 20 new links suddenly appear! So, please use this with caution.

Export XML

Starting with the VST SDK 2.4, Steinberg added a new feature to the VST specification — an XML
definition to refine the parameter definitions of a Plugln. Normally, the parameters are displayed as a
rather non-descriptive bunch of short strings and attached values (see “Toolbar” on page 78 for
details). To quote the VST SDK: “The VST Parameters Structure XML definition provides an easy
way to structure parameters of existing VST Plug-Ins hierarchically, without having to recompile the
Plug-In binary.” Well, in case of VSTHost, this doesn’t really apply yet (the hierarchical definitions
are ignored), but at least it can be used to give the parameters more descriptive names, add tags to
various value ranges, and the like. If a .vstxml file or embedded resource is available with a Plugln,
VSTHost uses it automatically.

Since most Plugins don’t come with an associated .vstxml file (the only one I’m currently aware of is
Terratec’s KOMPLEXER), VSTHost allows the generation of such files. It uses all data about the
parameters that it can gather from the Plugln to create a .vstxml file which you can adjust to your taste
(see the VST SDK for the Parameters Structure XML definition). This file has to have the same
filename and path as the Plugln, just with the extension .vstxml; for builtin Pluglns (which have no
corresponding file), it has to reside in the currently configured Data directory. Here’s a small example
for Steinberg’s Neon synthesizer, which can now be downloaded for free — and which, as one of the
first examples of a VSTi, has an exceptionally dumb (and short, which makes it a good candidate for
this discussion) parameter set:

<VSTPluginProperties>
<VSTParametersStructure>
<Param id="0" name="OscRang" label="amount" />
<Param id="1" name="OscWave" label="wave" />
<Param id="2" name="Osc2Det" label="amount" />
<Param i1d="3" name="LfoFreq" label="amount" />
<Param id="4" name="VcfCut" label="amount" />
<Param id="5" name="VcfReso" label="amount" />
<Param id="6" name="VcfAtt" label="amount" />
<Param id="7" name="VcfDec" label="amount" />
<Param id="8" name="VcfSus" label="amount" />
<Param id="9" name="VcfRel" label="amount" />
<Param id="10" name="VcaAtt" label="amount" />
<Param id="11" name="VcaDec" label="amount" />
<Param id="12" name="VcaSus" label="amount" />
<Param id="13" name="VcaRel" label="amount" />
</VSTParametersStructure>
</VSTPluginProperties>

Figure 55: Neon.vstxml in its original form

61

Here’s an example how that could be restructured to make things a bit more readable:

<VSTPluginProperties>
<VSTParametersStructure>

<!-- Value Types: -->

<ValueType name="OscRang" label="'"'">
<Entry name="16" />
<Entry name="8" />
<Entry name="4" />

</ValueType>

<ValueType name="OscWave" label="">
<Entry name="Triangle" />
<Entry name="Sawtooth" />
<Entry name="Rectangle" />

</ValueType>

<Group name="Oscillator">
<Param id="0" name="Osc Range" shortName="OscRng" numberOfStates="3"

type="0OscRang" label="'" />
<Param id="1" name="Osc Waveform" shortName="OscWv" numberOfStates="3"
type="0OscWave" label="" />
<Param id="2" name="Oscillator 2 Detune" label="" shortName="Os2Det" />
</Group>
<Param id="3" name="LFO Speed" label="" shortName="LfoFreq" />
<Group name="VCFE">
<Param id="4" name="VCF Cutoff" label="" shortName="VcfCut" />
<Param id="5" name="VCF Resonance" label="" shortName="VcfRes" />
<Param id="6" name="VCF Attack" label="" shortName="Att" />
<Param id="7" name="VCF Decay" label="" shortName="Dec" />
<Param id="8" name="VCF Sustain" label="" shortName="Sus" />
<Param id="9" name="VCF Release" label="" shortName="Rel" />
</Group>
<Group name="VCA">
<Param id="10" name="VCA Attack" label="" shortName="VcaAtt" />
<Param 1d="11" name="VCA Decay" label="" shortName="VcaDec" />
<Param id="12" name="VCA Sustain" label="" shortName="VcaSus" />
<Param id="13" name="VCA Release" label="" shortName="VcaRel" />
</Group>

</VSTParametersStructure>
</VSTPluginProperties>

Figure 56: Neon.vstxml, modified

VSTHost doesn’t use the groups yet, it still displays all parameters in numerical order; but all other
settings are used the next time you load the Neon Plugln.

VSTXML Format Extension

Since V1.53, VSTHost uses an extended version of the VSTXML format for VST2 Shell, VST
Module Architecture, and VST3 Pluglns; in the VST SDK 2.4 definition, the name and id attributes of
the VstParametersStructure element are not available. This, however, precludes the use of .vstxml files
for Shell Pluglns; there would be no way to add more than one Plugln's parameters to the file, even if
the Plugln supports dozens of internal Pluglns.

The id attribute helps VSTHost to maintain separate VstParametersStructure elements for each of the
Pluglns in the Shell Plugln. This works for VST2 Shell Pluglns, VST Module Architecture Pluglns,
and VST3 Pluglns, by the way — Steinberg may have decided to drop and replace the format with VST
3.5, but I certainly haven't ©.

Note: Since this is a nonstandard extension, it might cause problems with other hosts that include
support for the VSTXML format. To minimize the possibility, VSTHost always puts the last exported
definition first in the VSTXML file, followed by potentially existing definitions for other Pluglns in
the same module. That should, in theory, ensure that this one is seen by other hosts. If that isn't enough

62

to stay compatible with your host, you can add the VSTXML_Ext=0 setting to VSTHost's main
initialization file (see “VSTXML Ext=1" on page 94 for details).

New Instance
Selecting this menu entry creates a new instance of the currently selected Plugln.

Close

Selecting this menu entry closes the currently selected Plugln and all of its windows if the main
window of the Plugln is active; otherwise, only the respective window is closed.

Program Name

Selecting this menu entry opens a little dialog where you can enter a new name for the current
program used in this Plugln:

| set Program Name X
Update current program nane
noname Cencel |

Figure 57: Set Program Name Dialog

Please note that while the change is instantly visible after you have pressed OK, you need to save the
Plugln’s Bank or Program to a file to really make it permanent. If Plugln sound banks are
automatically saved (see “Autosave Plugln Banks” on page 67 for details), this is taken care of when
the performance is saved.

Load Program

Selecting this menu entry opens a dialog where you can load a program (normally a file with extension
“fxp”) into the current Plugln.

For VST3 Pluglns, VSTHost can also load the VST3 standard file format (with extension
“.vstpreset”).

Save Program As

Selecting this menu entry opens a dialog where you can save the current program of the current Plugln
into a file (normally a file with extension “.fxp”).

Since V1.53, VSTHost defaults to the .vstpreset format for VST3 Pluglns, but this can be changed to
fxp format; this, however, is no true VST 1/2 program file, but an encapsulated .vstpreset-format file.

Next Program
Selecting this menu item changes the Plugln’s current program to the next program in the list.

Previous Program
Selecting this menu item changes the Plugln’s current program to the previous program in the list.

Export Programs

Selecting this menu item opens a dialog where you can select a folder; VSTHost then saves all
programs of the Plugln into this folder. Each program is saved under an automatically generated name
of the form PlugIinName_ProgramNumber.ProgramName.fxp — looks rather complicated when
written in this form, but if you look at an example, like “ASynth_001.PWBass.fxp”, it becomes fairly
obvious.

63

Programs mm-nn

A Plugln can define how many programs it supports. Some have no program, some have one, some
have 10, others have 128... and so on. Since a single list of potentially thousands of programs would
be rather awkward to use, VSTHost splits it into manageable parts and displays a list of submenus for
these. Selecting one of the items on the submenu loads the selected program into the Plugln.

The above three menu items change the current program for a Plugln; VSTHost remembers this
program number, together with a potentially loaded Program Bank. VSTHost loads this program into
the Plugln automatically whenever the VSTHost performance containing the Plugln is loaded.

Note: VSTHost does not automatically save the Plugln’s program bank. If the Plugln relies on a
specific setup that’s stored in a bank file, please remember to save that before you save the
performance. Since V1.43, this can be changed (see “Autosave Plugln Banks” on page 67).

Performance Menu

This menu contains entries that deal with performance operations.
Performance
Load.,, Chrl+L
Save Chrl+5
Save s,
Mext AlE+Shift+H

Export...
Import. ..

Reload

Aukosave
v Aukosave Plugln Banks
v Mute On Load

Figure 58: Performance Menu

Load
This menu entry opens the following dialog:
Load V5THost Performance
000 - Int = =)

001 - aldarf Attack,

002 - PPG Wave 2

B85 s
004 - Augur

005 - Augur + Mean thru Chx
006 - rgesfz

007 - G Flayer

008 - Shudder

009 - Skin Showcase

010 - rgessfz inverse velocity
M1 - 10 Conkected

012 -WSTha Echo Mean
013 -%5T3 Againe

014 - == it =

015 - == Init =

06 - = Init =

017 - = Init =

018 - == Init =

e - = Init =

020 - = [nit =

021 - = Init =

022 - = Init = Up
023 - # Init =

HH i} owE 1
024 - Iriit " Down
MAAE =x 1o oxx L 2 o

Figure 59: Load VSTHost Performance Dialog

Here, you can select one of the 129 possible performances in the current bank (see “Use Bank...”
above).

This operation can also be performed by sending a Program Change MIDI message to the Remote
Control Channel, with one exception: performance 000 is a special program; this cannot be selected by
remote operation. Unless Reload Performance is checked on the File menu, VSTHost loads this
performance as its initial setup. This way, you can define a nice default environment.

A performance’s initial name is “** Init **”” — not very inventive, | have to admit — and can be
changed if you save it with Save As... (described below).

The Up and Down buttons can be used to reposition the selected performance in the current bank.
The Delete button can be used to delete the selected performance from the bank.
Note: these action takes place immediately; it can not be undone by pressing the Cancel button.

Save

Selecting this menu entry saves the current performance. If Autosave Performance (see below on
that) is turned on, and if the /nosave parameter is not given, VSTHost always saves the current
performance when it exits. When another performance is loaded, the current performance is saved in
any case before loading the new one.

Save As

This menu entry opens the following dialog:
Save V5THost Performance As...
Nare: i

000 - # Jrit == ”
00 - aldarf Attack
002 - PPG Wave 21

003 - Crpgtal

004 - Augur

005 - Augur + Mean thru Ch

006 - rgc:sfz

007 - Gk Flayer

008 - Shudder

009 - Skin Showcase

010 - rgessfz inverse velocity

011 - 10 Connected

02 -W5TMA Echo Neon

013 -WST3 Agains

014 - Iniit =
015 - Init =
016 - Init =
017 - Iriit =
018 - Iriit =
019 - = Iriit =
020 - = [riit = Up
021 - Iriit **

022 nd -

Figure 60: Save VSTHost Performance As... Dialog

Here, you can save the current configuration to a(nother) performance. After having selected the new
position in the list box, you can give the performance a descriptive name. Pressing OK saves the
performance to the new position and automatically uses it as the new current performance.

The Up and Down buttons can be used to reposition the selected performance in the current bank.

The Delete button can be used to delete the selected performance from the bank.
Note: these actions take place immediately; it can not be undone by pressing the Cancel button.

Next

This menu entry loads the performance with the next higher number.

65

Previous
This menu entry selects the performance with the next lower number.

Export

Loading and saving performances works nice as long as only one VSTHost instance on one machine is
concerned, but it has one big problem: sharing performances between machines and/or users is quite
difficult, since VSTHost uses a very simple scheme to store performances inside the bank. “Simple”
for VSTHost, but not so simple to share, since it uses a (potentially large) number of files plus a set of
entries in the performance bank file, which would have to be assembled by hand — and reinserted on
the target machine by hand, too, including tedious file renaming if the performance is to be stored
under another number.

Since V1.49, VSTHost contains an Export/Import Performance feature which eases things quite a lot.
A complete performance can be exported into one file, which can be easily shared.

This menu entry opens a standard file dialog where you can select the file name of a “VSTHost
Performance File” (with the unmistakable extension .vsthostperf) to store the currently loaded
performance to. After having pressed OK, the complete performance and the current banks of all
loaded Pluglns are stored into this file; that means that it can become quite large.

This performance file can then be easily sent to others, or stored in a performance library.

Import

This menu entry opens a standard file dialog where you can select the file name of a “VSTHost
Performance File” (with extension .vsthostperf) to be loaded into the current performance (see
“Export” above on the topic of performance exports).

VSTHost does not include the Pluglns themselves in the exported performance, only their location on
the machine where the performance is exported. If the Plugln is not at the same location on the target
machine, VSTHost tries its best to find Pluglns of the same name in the configured Plugln path and
then shows the following dialog, which contains the original path and the found alternatives:

¥ o

Select Plugin...

W etPluging\Leveler. dll -»

Cancel

Figure 61: Plugln Selection Dialog

where you can select the corresponding Plugln. If there's no Plugln of the same name available, you
can use the “Path...” button to select one from another location — but it should better be the same
PluglIn, otherwise the bank stored in the performance won't work with it. Pressing Cancel instead
removes the Plugln from the imported performance.

Note: in contrast to loading a performance (see “Load” on page 64 for details), the imported
performance does not replace the previously loaded one; it is added to the current setup instead. This

66

allows to use the exported performances as “building blocks” that contain a complete set of
preconfigured Pluglns for a specific task.

Reload

This menu entry can be toggled; if it is checked, VSTHost reloads the last used performance when it is
started the next time (unless the /noload parameter is given, of course). If it is unchecked, VSTHost
always loads the default performance (number 000) when it starts.

Autosave

This menu entry can be toggled; if it is checked, VSTHost saves the current performance whenever
another performance is loaded, or if VSTHost is terminated.

Autosave Plugln Banks

Starting with V1.43, VSTHost can automatically save the current settings of all Pluglns of a
performance. In previous versions, you had to do it on your own — if you loaded a Plugln, and changed
any sound parameters, you had to save the Plugln’s bank. VSTHost just remembered the currently
loaded bank’s name with the performance. This is still the default, but, unless you’re working in an
environment with very little free space on your hard disk, you might consider turning this Autosave
mode on. It adds a lot of comfort.

In order for this to work, VSTHost allocates a sub-directory for each bank (see “Use Bank...” on page
31) in its Data directory and stores the banks for each performance there.

Mute On Load

This menu item can be toggled to determine whether VSTHost should mute the output while a new
performance is being loaded. Normally, this is turned on. Turning it off reduces the “silent time” while
the performance is loaded, but, depending on the Pluglns used, it can lead to quite audible distortions
and/or dropouts.

Reuse Wave/MIDI Files

This menu item can be toggled to determine whether VSTHost reuses the currently loaded Wave
and/or MIDI files when loading a performance that does not contain any specific wave and/or MIDI
files to load. Normally, this is on, and guarantees a smooth operation when loading a performance file
while wave and/or MIDI files are currently played back. It has some side effects, however ...

* Ifthe freshly loaded performance is saved, it suddenly contains references to the loaded wave
and/or MIDI files, so when reloading this performance, they are loaded, too. This may not
exactly be in the user’s interest.

* This way, it is impossible to guarantee that a performance is loaded without wave and/or MIDI
files loaded.

To overcome these problems, reusing the wave and/or MIDI files can be turned off.

Since this setting is saved with the performance (and thus can be overridden by loading another
performance), it is necessary to save the “fileless” performance after having unchecked this menu item
(and, maybe, having unloaded the files). Also, this option is remembered globally, so if you uncheck
it, VSTHost keeps that mode active until it is checked again - or until a performance is loaded that
resets it.

67

Engine Menu
This menu contains entries that control the overall operation of the VST Audio Engine.

Engine
¥ Run
Restart

Configure...
Audio Thru

BFM...
v Load BPM

Wave Recorder
Midi Player ¥

Midi Fanic
Send Sysex File..,

Figure 62: Engine Menu

Run

Selecting this menu entry toggles the engine’s run mode. When VSTHost is started the first time, the
engine is turned on; selecting this menu entry, or clicking on the corresponding toolbar button, turns it
off.

This menu entry is primarily used for debugging purposes; sometimes, if you just want to debug
various display aspects of a Plugln, it’s not necessary to keep the full audio engine running in the
background, consuming tons of precious CPU cycles.

Restart

Stops and restarts the audio engine. Mainly useful if something goes wrong (buffer size too small, for
example, leading to synchronization errors between VSTHost and the ASIO driver).

If Player Sync is not checked (see “Player Sync” on page 74 for details), this can be used to reset the
current position.

Configure
This is one of the many tabbed dialogs in VSTHost. It has the following tabs:

Input Assign
Selecting this tab opens the following dialog:

|' Engine Configuration Eﬂ\

Assign Input Channels | Assign Output Channels | Priorities | Speed

Engine Channels al =

Engine Input Wenve Device
Engine Ingut 1 3. Line In Laft
Engine Input 2 4: Line In Right
Engine Input 3 1: CO In Left

Engine Input 4 2: CD In Right
Engine Input 5 5. Phono,/Mic [n Left
Engine Input & &: Phono/Mic In Right
Engine Input 7 7. Digitad In Left
Engine Input & 8: Digital In Right
Engine Input 9 9: Mix In Left

Engine Input 10 10: Mix In Right

[ok][Apbrechen |

Figure 63: Engine Configuration, Assign Input Channels Tab

68

Just as a Plugln can have its inputs reassigned (see “Chain After” on page 59), so can VSTHost’s
Audio Engine.

You can define the number of audio input channels that VSTHost's engine uses internally; the default
setting of -1 means “use as many channels as provided by the current audio input device”. If you want
a consistent setup for multiple audio devices, like “the internal engine uses 2 input channels, no matter
what the audio interface provides”, you can set it up here.

On the left side, the channels used by VSTHost’s VST audio engine are listed; on the right side, you
can select one of the channels provided by the loaded Wave Input device. Click on the “...” on the
right side of the Source column to select from the available channels.

This allows a reassignment, or removal of certain unwanted channels. See the above figure — the DMX
6fire 24/96 ASIO driver presents the CD In Left and Right channels in positions 1 and 2; I prefer to
have the Line Inputs there so that loaded Effect Pluglns automatically use these if their input
assignment is not specifically set.

Output Assign

Selecting this tab shows the following, already familiar, dialog:

|' Engine Configuration W‘

Assign Input Channels | Assign Output Channels | Priorities | Speed

Engine Channels iz

Engine Output Wenve Device
Engine Output 1 1: Froni Lef
Engina Output 2 2: Front Fuight
Engine Output 3 3 RearlLeft
Enging Output 4 4: Rigar Right
Engine Output 5 §: Center

Engina Output & &: LFE

Engine Output 7 7. Digital Qut Lett
Enging Output & & Digital Out Right

[OK][Abbrechan I

Figure 64: Engine Configuration, Assign Output Channels Tab

This works just like Input Assign above, but in the other direction. Here, you can assign an output
channel provided by the Wave Output device to each of the VSTHost audio engine’s internal channels.

You can define the number of output audio channels that VSTHost's engine uses internally; the default
setting of -1 means “use as many channels as provided by the current audio output device”. If you
want a consistent setup for multiple audio devices, like “the internal engine uses 2 output channels, no
matter what the audio interface provides”, you can set it up here.

69

Priorities
Selecting this tab shows the following dialog:

|' Engine Configuration Eﬁ\

Assign Input Channels | Assign Output Channels | Priorities

Process
ldle

®) Mormal
_)High

") Realtime (dangerous!)

Ul Thread Audio Thread
Didle O idle
_Lewest () Lowest
") Below Normal () Below Nomal
o) Narmal () Nomal
") Above Momal (D) Above Normal
_Highest (®) Highest
) Time Crifical (D Time Critical
[OK] I Abbrachen l

Figure 65: Engine Configuration, Priorities Tab

Normally, this can be left untouched; VSTHost automatically sets the priority to “very high” before
loading an ASIO driver and then reverts to the configured setting. This leads to a reasonable behavior
in most cases. If the default settings don’t work satisfactorily with your specific configuration, you can
play with VSTHost’s settings until you find a solution that works. Be careful, however — setting the
process priority to Realtime and the thread priority to Time Critical can lead to situations where
VSTHost consumes all of the computer’s CPU time and doesn’t let anyone else work — the computer
freezes. Especially dangerous on slower machines. You’ve been warned — “Don’t press this button!”

©

Since V1.54, there's a check box labeled “Use MMCSS” which only appears on Windows systems
starting at Vista / Server 2008. If checked, the audio processing threads use the Multimedia Class
Scheduler Service (MMCSS) available on these systems to set the thread class to “Pro Audio” (or
“Audio”, if the “Pro Audio” class is not defined). VSTHost only does this for its own audio processing
threads; those created by ASIO drivers are not touched, “thanks” to a fundamental flaw in the
MMCSS system which makes it impossible to determine the current class of a thread, and whether it's
set by someone else or not.

Please see the Microsoft documentation on MMCSS for further details.

Note: you need to restart VSTHost to activate changes to this setting; if it's active, changes to the
Audio Thread Priority require a restart, too.

Speed

70

Engine Configuration E

| Assign Input Channels || Assign Output Channels | Priorties | Speed |

i Na

Load from pedfomance

Figure 66: Speed Tab

If you don’t have the main toolbar (see “Toolbar” on page 78 for details) activated, you can define
VSTHost’s current BPM rate using this tab. With this, you can define the speed that VSTHost reports
to the loaded Pluglns. The Load from performance check box duplicates the function of the “Load
BPM” menu entry (see below).

osc

[Engine Configration &

Azgign Input Channels | Assign Output Channels | Priorities | Speed | 050

Transpost *HMone* -1

Port 770

Q. | | Abbrechen

Figure 67: OSC Tab

OSC is the acronym for “Open Sound Control”; this is a transport protocol specification that allows to
control many aspects of VSTHost over a network connection. The OSC specification can be retrieved
from http://opensoundcontrol.org.

VSTHost currently offers a rather limited implementation; for details, see “Appendix B: OSC
Implementation” on page 97.

71

http://opensoundcontrol.org/

On this tab, you can configure the network connection VSTHost uses for the OSC service.

VSTHost implements the following network protocols, so that it should interface with the widest
variety of OSC controllers (Jazzmutant Lemur, iPad, ...), which you can select from the Transport
combo box:

UDP The most commonly used protocol, where OSC messages are transmitted as UDP
packets
TCP OSC 1.0-compatible TCP transport, where the packets are transmitted with a leading

4-byte length information in binary form.
TCP Slip OSC 1.1/2.0-compatible TCP transport which uses SLIP frames to delimit the
packets, which is a more robust form

Since OSC only defines the protocol of the packets traveling around, without limiting the underlying
transport mechanism, you have to find out which transport method suits your controller best.

Port defines the UDP/TCP port to use. A commonly used value, 7701, is used as default value, but
you can use anything you like (... if you know what you're doing! ©@).

Note: activating one of the network transports will most likely trigger the Windows firewall, if you are
using any post-Windows 2000 operating system; you'll be asked whether you really want to allow
VSTHost to access the network. This is normal, since VSTHost installs a network service in this case
that allows other computers to access it — so you'd better allow it, or other PCs and/or OSC-compatible
controllers won't be able to access VSTHost.

Audio Thru

This menu entry can be toggled to define whether VSTHost directly passes its Audio input to the
output. If checked, the audio input is not only sent through potentially loaded Pluglns, but also directly
to the Wave Output device. In versions before V1.40, this was the default (and only) behavior; now,
the default setting is Off to prevent audio feedback loops.

Since V1.46, checking this item has the result that VSTHost automatically creates a link between the
{In} and {Out} built-in Pluglns. Of course, you can set this by hand as well — this menu item might
disappear in the next version, as it's not really necessary any more.

Note: this setting is stored with the current performance, since it depends on the used Pluglns whether
it makes sense.

Soft Clipping

Digital audio processing has its problems. One of them is that the sound card has a fixed volume
range; if you try to play something louder than the sound card allows, the loudest parts are clipped —
they are reduced to the highest possible level. In contrast to audio mixing consoles, where there's
always a bit of additional headroom before audible distortion sets in, this digital clipping starts
immediately and is quite audible, since it introduces quite some overtones.

In versions before V1.54, VSTHost didn't care about that at all — after all, it's easily cured by turning
down the output volume a bit, so a little bit of consideration when setting up a processing chain is
enough. Now, you can also turn on “Soft Clipping”, which tries to soften the clipping effect.

This has its merits: slight distortions become unheard, and the output level never gets too high. But it
has its drawbacks, too: it costs a bit of the precious CPU time, although on any machine that's capable
of using SSE the additional burden is negligible, and introduce a bit of distortion on its own.

BPM

Selecting this menu entry opens the Speed page of the Engine Configuration window (see “Speed” on
page 70 for details).

72

Load BPM

This menu entry defines whether VSTHost loads the BPM settings from the performance or not.
Sometimes, you might want to automatically adjust the speed for a performance’s Pluglns, sometimes
this is not needed; you can turn this on and off here.

Recorder
This is a submenu to configure and run VSTHost’s built-in Wave Player and Recorder.

Wave Recorder | Full Rewind
Rewind
Play Backwards
Stop
Record
Flay

Fast Forward
Full Forward

Add to Input
+ Autorepeat
Autorepeat Winding
+ Player Sync

+ Flayer File...
Configure Recorder

Figure 68: Recorder Submenu

VSTHost contains two separate entities for that: a Wave Player and a Wave Recorder. The Wave
Recorder is inserted into the audio engine just before the sound data are sent to the output device; the
Wave Player can be inserted there, too, or in parallel to the audio engine input. The accumulated
output can then be recorded by the Wave Recorder, allowing ping-pong style recordings.

The same menu is also available in form of a toolbar, which additionally offers a display of current
and total time:

Figure 69: Recorder Toolbar

I admit freely that this is not a very elegant solution, but there are lots of sophisticated sequencer
packages on the market. This little one-man spare time project called VSTHost doesn’t, and can’t
compete with them in their own arena. If you need nifty audio recording features, VSTHost isn’t the
right program. The Wave Recorder and Player are just little additions that allow capturing a jam
session, for example, or allow the playback of a prerecorded track while you play some VSTi Pluglns
to it, or run a prerecorded track through a (set of) effect(s).

The Wave Player mimics a tape recorder, just like the ones you all might know since early childhood,
with some little add-ons — you can, for example, play the loaded file backwards, and you can record
and playback at the same time.

Whenever the Stop button or menu entry is clicked while recording, VSTHost allows you to determine
whether and under which name the recording should be saved.

Some of the menu items, however, do require a little explanation:

Add to Input

This menu entry can be used to toggle the Wave Player’s position. If it is checked, a played audio file
is played in parallel to the audio engine’s input so that you can run it through (chains of) loaded
effects. If it is unchecked, a played audio file is played in parallel to the accumulated ouzput of all
loaded Pluglns.

73

Autorepeat

This menu entry can be used to toggle between normal playback mode, in which the Player stops when
it reaches the end of the input file, and auto-repeat mode, where it automatically restarts playback.

Autorepeat Winding

This menu entry can be used to toggle between normal winding mode, in which the Player stops when
it reaches the end of the input file, and auto-repeat mode, where it automatically restarts winding.

Player Sync

This menu entry can be used to change the semantics of the Wave Player a bit.

If unchecked, the player is treated as a separate sound generation device, and VSTHost uses a free-
running transport information sent to the Pluglns (i.e., it always reports “playback is running”, and the
current position is incremented).

If checked, however, the Wave Player acts as a simple transport control for the VST engine. If you
load a Plugln that has sequencing capabilities (Phrazor comes to mind, or Jamstix), this can be used to
control the Start/Stop/Position information sent to the Plugln. This functionality also works if no file is
loaded into the Wave Player; in this case, it just “plays” silence until Stop is pressed, and Full
Forward cannot be selected (there’s no defined end position).

This is not a very elaborate transport control yet (you can’t, for example, set loop positions), but
sufficient for basic transport control purposes.

Player File

Here, you can define the file that the Wave Player uses. Most of the transport menu entries / toolbar
buttons will be grayed out until a valid Wave file has been loaded. Before V1.43, this was a global
setting; now, it is stored with the current performance.

Normally, VSTHost loads only .wav files; you can, however, teach it to load .mp3 files as well.
VSTHost can use the mpg123 package for this. You can find it at http://www.mpg123.org.

Since there might be “interesting” licensing problems with the MPEG consortium (not with the
libmpg123 creator, as this is licensed under the LGPL, so I could embed it without problems) if
VSTHost simply included this package, I've decided against doing it. You have to download and
install it yourself — this way, there should be no licensing problems.

Here's how to get it, if you haven't installed it already:

1. You have to download a version from http://www.mpg123.org - on their download page,
there's this nice little paragraph:

Win32 and Win64 binaries

You Windows folks are lucky since version 1.6.0: Patrick joined the team as a Windows
developer and is providing binaries regulary, see download/win32/! Also, JonY chipped in
with builds for 64bit Windows, to be found in download/win64/. The latter files are signed
with JonY's GPG key. He likes to play with freshest toolsets, p.ex. 1.12.4 binaries are built
with gcc 4.6 and link time optimization.

So, go to the Win32 or Win64 download directory now, depending on the version of VSTHost
that you're using. There's a whole range of files of different versions there; when I wrote this
paragraph, I used http://www.mpg123.org/download/win32/mpg123-1.13.0-x86.zip and
http://www.mpg123.org/download/win64/mpg123-1.13.0-x86-64.zip. At the time you read
this, there might be a better version available; as long as the .zip contains a file called
"libmpg123-0.dI1", you should be able to use the latest&greatest version.

74

http://www.mpg123.org/download/win64/mpg123-1.13.0-x86-64.zip
http://www.mpg123.org/download/win32/mpg123-1.13.0-x86.zip
http://www.mpg123.org/
http://www.mpg123.org/

2. Once you decided on and downloaded a file, all you need to do is to unzip the file libmpg123-
0.dll contained in the archive to a position that VSTHost finds in the library search path. I put
it into the Windows system directory, but that's not really necessary; the easiest place, if you
don't need libmpg123-0.dll in any other product, is the directory where you installed
VSTHost.

Of course, you can unzip the complete package and enjoy the nice little MP3 player
application it contains, but... well, you already got the Windows Media Player, and/or
WinAMP, and/or... still, you can. If you want to look at the license, or add the DLL to your
own programs, you find everything you need in the package.

3. Once you installed the libmpg123 package so that VSTHost can find it, and restarted
VSTHost if it was running, it should be able to load .mp3 files, too; the dialog should show
come up with the file type “Audio Files (*.wav; *.mp3)” now.

Note: I just tried version 1.23.8, and obviously they changed something; the 32-bit version of
libmpg123 also needs libgec_s_sjlj-1.dll from the .zip file in order to load.

Configure Recorder
Selecting this menu item brings up the following dialog:

| Wave Recorder Configuration <]
Channels Bits Winding dB 0K |
Y ™ \
U Cancel |
< 2 :_<_ 16+« -30 | []Elosting-point

Figure 70: Wave Recorder Configuration Dialog

Here, you can define the format of files that are recorded by VSTHost. The default setting is rather
conservative — 2 channels, 16 bit integer. This format has the big advantage that the generated files are
comparatively small and can be read by virtually every wave file editor package in existence. It isn’t
the best format, however...

Most modern sound cards for musicians can do much better. They can deliver accurate sampling and
playback of 24 bit audio streams, on potentially dozens of channels — far more than VSTHost’s CD-
compatible default format permits.

The Channels setting should not exceed the available number of output channels in the VSTHost
audio engine — while you can set it to up to 32 channels, most of them would simply contain silence. A
rather costly silence, since each little sample of silence occupies at least a byte on your hard disk, more
likely two, or even four bytes.

The Bits setting is a bit misleading. You can set the number of bits per sample, but internally VSTHost
treats them the following way:
e 8 generates 8-bit unsigned samples; like in the old SoundBlaster 1 days ©
9-16 generates 16-bit signed samples
17-24 generates 24-bit signed samples
25-32 generates 32-bit samples

Floating-point, if selected, overrides the Bits setting. In this case, the 32-bit floating point data that
are used internally by VSTHost are directly recorded. This provides the most accurate recording that
also deals very gracefully with clipping, but produces rather large recordings.

Winding dB is actually a setting for the Wave Player. While rewinding or fast forwarding in the wave
file, you can listen to the data currently being under the “virtual head” of this simulated tape recorder.
With this setting, you can define the playback level which is used while winding. Setting this to -60
dB disables the feature, thereby saving some CPU cycles.

75

Pre-Fader Recording

In versions before V1.54, VSTHost always did a “pre-fader recording” - i.e., if you record to a file, the
output is recorderd before the Output fader (see “Master” on page 85 for details) takes effect. If this
setting is turned off, VSTHost switches to “post-fader recording”, taking the recording after the output
level has been set and soft clipping has been applied.

Note: if you use post-fader recording, you might want to make sure that the Record fader (see
“Master” on page 85 for details) is set to its default value of 0dB; if it isn't, it is applied affer the
output level / soft clipping (see “Soft Clipping” on page 72 for details) operations.

MIDI Player
This is a submenu to configure and run VSTHost’s built-in MIDI Player.

Midi Player L Stop
Flay
Pause
v Autorepeat

~ Player File...
Configure MIDI Player...
Use Engine's BFM

v Set Engine's BPM
Player Sync

Figure 71: MIDI Player Submenu

Since V1.40, VSTHost contains a MIDI File Player. This relatively simple player allows to load MIDI
sequences and to send them to the loaded Pluglns and/or to the opened MIDI Output devices.

The same menu is also available in form of a toolbar, which additionally offers a display of current
and total time:

L
Figure 72: MIDI Player Toolbar

The display is in time format (hh:mm:ss.mmm), just like the Wave Player’s.

I admit freely that this is not a very elegant solution, but there are lots of sophisticated sequencer
packages on the market. This little one-man spare time project called VSTHost doesn’t, and can’t
compete with them in their own arena. If you need nifty MIDI recording/editing/playback features,
VSTHost isn’t the right program.

Note: the MIDI Player built into VSTHost isn’t complete yet; if you try to load MIDI files that contain
SMPTE time information or Type 2 files that contain different speed settings for the contained tracks,
chances are high that the results are a bit... well, unexpected ©.

The meaning of the Stop, Play, and Pause menu entries should be clear to anybody. If not, tell me ©.

Autorepeat

This menu entry can be used to toggle between normal playback mode, in which the Player stops when
it reaches the end of the input file, and auto-repeat mode, where it automatically restarts playback.

Player File

Here, you can define the file that the MIDI Player uses. Most of the transport menu entries / toolbar
buttons will be grayed out until a valid MIDI file has been loaded. Before V1.43, this was a global
setting; now, it is stored with the current performance.

76

Configure MIDI Player

Selecting this menu item brings up the following dialog:

| MIDI Player Configuration w‘
[[JUseEngine’s BPM [w]SetEngine's BPM [ok |
Send MIDI data to: -

* Al loaded MIDI Output Devices * Cancel

MIDI Yoke NT: 7

Figure 73: MIDI Player Configuration Dialog

Here, you can define various settings. Use Engine’s BPM and Set Engine’s BPM correspond to the
menu entries described below. Send MIDI data to: defines the MIDI devices that the MIDI Player
sends to; by default, MIDI data are only passed to interested PlugIns. You can select one of them by
simply clicking on it; to select a range, click on the first and then shift-click on the last; to add or
remove a specific device, control-click on it.

Use Engine’s BPM

If this menu item is checked, VSTHost overrides the BPM settings in the MIDI files with its own that
you can define on the main toolbar (see the corresponding field in the toolbar discussion on page 80
for details).

Set Engine’s BPM

If this menu item is checked, VSTHost adapts its BPM settings to the ones that are used in the MIDI
file. This can be important for Pluglns that, for example, adjust LFO or delay settings to the used BPM
rate.

Player Sync

This menu entry defines whether the MIDI Player is treated as a separate entity or controlled with the
Wave Player’s transport control buttons. Since the MIDI Player in its current incarnation is a bit
restricted (you can’t, for example. move to a specific position), checking this menu item modifies the

transport controls of the Wave Player, too — you can’t select things any more that aren’t possible for
MIDI playback.

Midi Panic

This menu entry is only there for emergencies. When you need it, you need it badly ©. When selected,
VSTHost tries its best to reset all loaded VSTi Pluglns, MIDI-capable effect Pluglns, and all MIDI
devices attached to the configured MIDI Output ports to a known state. It turns off all notes on all
channels, resets all controllers and pitch wheel information.

Send SysEx File

This menu entry can be used to send a SysEx file (.syx format — the simplest possible format, just a
bunch of SysEx messages) to all MIDI devices that have been configured on the SysEx window (see
“SysEx” on page 85 for details).

Devices Menu

All entries of this menu have already been discussed in the Configuration section (see “Configuration”
on page 13 for details).

77

View Menu
View

AUt Edt

Linear Knobs

v Toobar

v Recorder Bar

v Keyboard Bar
Configure Keyboard Bar. .
Capture Keyboard F11

v Midi Flayer Bar

v Stalus Bar

v Status Bar Level Meter
Peak Value Level Meters

v Minimize to System Tray
skin...

Figure 74: View Menu

This menu can be used to configure VSTHost’s general layout.

Auto Edit

This menu entry defines how new Pluglns are treated; when it is checked, and you load a new Plugin
that allows to open an Editor window (see “Toolbar” below), this editor window is opened
automatically.

Linear Knobs

This menu entry can be used to toggle between circular (default) and linear knobs (if the respective
Plugln's editor window supports this). A “knob” is the on-screen representation of a rotating
potentiometer, which you'll find in quite a lot of Pluglns (and some in VSTHost, too, for example on
the Speed property sheet.

In Circular Mode, whenever you want to change a knob's value, you have to click on the knob and
then determine the new value by dragging the indicator on the knob to the new position in a circular
fashion — the indicator always points into the direction of the mouse pointer.

In Linear Mode (that's the Steinberg term — in VSTHost, I labeled it “Vertical Linear Relative Mode”,
which is what it really does), you click on the knob and then modify the value by dragging the mouse
up to increase the knob's value or down to decrease it.

Toolbar

This menu entry toggles the main toolbar display. This is the main toolbar:

Figure 75: Main Toolbar

First, obviously, there’s a combo box that allows direct selection of a VSTHost performance of the
current bank. This works just like the Load Performance menu entry in the File menu (see “Load” on
page 64 for details).

acts like the New PlugIn menu entry (see ,,New Plugln® on page 33 for details).
This button opens a popup menu with the contents of the Pluglns menu entry (see
“Pluglns” on page 38 for details) to allow for convenient selection of one of the Pluglns
known to VSTHost.

I acts like the Run menu entry (see ,,Run® on page 68 for details).

: activates the main window of a Plugln (see “New on page 33 for details)

! Opens or activates the currently selected Plugln’s Information Window; this window
contains valuable(?) information about the Plugln and its properties, like this:

78

(@0 asynth =, <]

Plugin #0: C:\ProgrammeSteinberg',VstPlugins|ASynth dil
th

Pragram 0: Moogbass1

64 programs
36 parameters
0 inputs
1 outputs
Flags: 00000131H
Has Editar
Supports in place output
Program data are handled informatiess chunks
lsa
Exports VST SOK <= 2.3 main funchion
Unigue 1D 478 (34377935H)
Warsion 1
1 program categories
ain Program category: Synth
Flugln can da:
recevevsiEvents
recaneysthidiEvent

Loaded file: G:\Dew\vWSTHost| DatalBank(yPOFAD b

Chained as Send before 1: Classic Reverb (7.0 dB)

Figure 76: Plugln Information Window

Opens or activates the currently selected Plugin’s Editor Window; this window is
provided by the Plugln for configuration purposes. Since it’s provided by the Plugln, the
layout of this window can vary. Greatly. And since the window behavior is controlled by
the Plugln, this can vary greatly, too... anyway, here’s an example:

0 1 E: Classic Reverb Program 0: Default M= <]

REVERBERATION — FILTERS
20 a9
"I-JU ~
25— —180 | " 90—
L R - 120
0525 640 MIN

LR B
-

"y
0 1k

0 X 150 MIN MAX < +6
SZE (w7 DAMPING PREDELAY (ma) i DAMP. LOCUT (Hz) EARLY REF. (dB)

150

Figure 77: Example Plugln Editor Window

Opens or activates the currently selected Plugln’s Parameter Window; since not all
Pluglns provide an Editor window, this might be the only possibility to set the PlugIn’s
parameters. Some Pluglns can only be configured on the Parameter window; others refuse
that completely and only accept input from the Editor window. Anyway, you can open
both in VSTHost. Here’s an example:

(81 P: Classic Reverb Program 0: Defa... - [0/

Figure 78: Example PlugIln Parameter Window

The displayed parameters and their values, of course, vary from Plugln to Plugln; while
the layout is done by VSTHost, the parameters, their value range and display are provided
by the Plugln. If the Plugln has more than 100 parameters, the window contains a menu at
the top that allows to select a parameter range to be displayed.

Note: by double-clicking the displayed value, you can enter new values directly. If the

Plugln supports it, the Plugln handles the entered values; if not, VSTHost provides a
default implementation which accepts the input of floating-point values in the range 0..1.

79

VSTHost remembers the opened windows and their positions for each Plugln in the
performance.

Opens the Plugin’s MIDI->Parameter Mapping window (see “MIDI -> Parameter” on
page 50 for details).

Opens the Plugln’s Parameter->MIDI Mapping window (see “Parameter -> MIDI” on
page 55 for details).

o These buttons correspond to the Previous Program and Next Program menu entries (see
“Next Program” and “Previous Program” on page 63 for details).

! This button opens a popup menu for the current Plugln that allows selection of a specific
program. It corresponds to the Program mm-nn menu entries in the Plugln menu, but is
displayed over the active PlugIn’s currently selected window.

— This field shows the currently defined speed. The default used by VSTHost is 120 BPM.
This value is reported to all loaded Pluglns. Clicking on the speed allows you to directly
enter a new BPM value, or modify the current using the mouse wheel.

' This button, in case you didn’t find that out by yourself, resembles a metronome. It opens
the Speed Setup dialog (see “BPM” on page 72 for details).

This button corresponds to the Midi Panic menu entry (see “Midi Panic” on page 77 for
details).

This button shows or hides VSTHost’s Keyboard Bar. See “Keyboard Bar” below for
details.

This button is used to configure the Keyboard Bar. See “Configure Keyboard Bar” on
page 81 for details.

! This button opens the Master window. See “Master” on page 85 for details.

This button is used to load a program bank into the currently selected Plugln. See “Load
Bank” on page 58 for details.

This button is used to save the current program bank of the currently selected Plugln to
disk. See “Save Bank” on page 58 for details.

The most important button of them all. See “About VSTHost” on page 87 for details.

Recorder Bar

Selecting this menu item hides or shows the Recorder toolbar display. The Recorder toolbar has
already been discussed (see “Recorder” on page 73 for details).

Keyboard Bar

Selecting this menu item hides or shows the Keyboard bar. The Keyboard bar, when opened for the
first time, looks like this:

LLILLLILLILLL L LI ILLILLL]E

Figure 79: Keyboard Bar

It comes up with a Pitch Wheel, a Mod Wheel, and a keyboard with 61 keys, covering the bottom area
of VSTHost’s main window. This bar can be configured to a very high degree (see “Configure
Keyboard Bar” below for details), and you can grab it with the mouse and fix it on top of the window
area or on the bottom (default), or anywhere else on the screen if you want to. VSTHost remembers
the position.

The Keyboard bar can be used as a “poor man’s MIDI keyboard”; you can enter MIDI messages by
mouse or (computer) keyboard with it. You can configure for each Plugln whether it reacts on

messages from the Keyboard Bar (see “MIDI Input Devices” on page 44 for details).

The following keys on the PC keyboard can be used to trigger MIDI Notes, if the Keyboard Bar is
active (i.e., activated by clicking on it with the mouse):

80

| Jeefoe] Jrelowleael Joefoe] | 1 |

Jezlozlez]rz]ezlaz]ozlcaloales] | |
lcaeloel Jreloe]ae]l lceloel |

20ct [cz|ozfez|rzez]azlez]cs]oz]es] +2oa

Figure 80: PC keyboard keys used for MIDI Note generation

In addition, the following keys can be used:

Left shift, Right shift transposes the PC keyboard's range two octaves down/up

Ins, Del increment/decrement pitch wheel data

Home, End increment/decrement modulation wheel

PgUp, PgDn increment/decrement key velocity

Left, Right decrement/increment upper keyboard octave

Down, Up decrement/increment lower keyboard octave
Configure Keyboard Bar

Selecting this menu entry opens the following dialog:

| keyboard Bar Configuration LX)
Keyboard Wheels = Colors | MIDI Output Devices
[¥] Octave Indicatars Channel Yelocity

[Key Labels
[CIMonophonic Keyboard:

H 1 BHE w B
[+] Send Afertouch [[18end Channel Prassure

Layout |85 ~ | keys statingat |CO v

[OK][Abbrechen l

Figure 81: Keyboard Bar Configuration Dialog, Keyboard Tab

Huh. Yet another of these tabbed configuration dialogs. Isn’t it depressing to see how many options
there are in such a simple program? ©

Anyway, this is the Keyboard tab where you can define the general layout of the Keyboard Bar.

Octave Indicators

If this item is checked, the Keyboard Bar shows 2 octave indicators below the keyboard. These are
two (normally gray) bars that indicate the keys that can be played on your PC’s keyboard. You can
drag these bars around with the mouse to change the octaves used by the upper and lower key range on
your PC keyboard (see “Keyboard Bar” above for the usable keys).

Key Labels

Gimmick for people who don’t use keyboards very often. You can display the note names on the keys.

Monophonic Keyboard

This check box can be used to switch between polyphonic and monophonic keyboard mode.

In monophonic keyboard mode, every pressed key terminates the previous note. The radio buttons
govern what happens when the current note is released, and there are still other notes held:
Lowest the lowest currently pressed key determines the current note
Highest the highest currently pressed key determines the current note
Last the last note pressed before the terminated note determines the current note

81

None still pressed keys are ignored

Channel
This knob defines the MIDI channel used for MIDI messages generated by the Keyboard Bar.

Velocity

This knob defines the velocity used if you trigger notes with the PC keyboard, which cannot send
velocity information (unfortunately... I’d love a keyboard where the attack can be used to define
whether a character is printed bold in a word processor, or where the pressure defines the auto-repeat
rate, or... ©). The velocity can be redefined by adding a Velocity Wheel to the keyboard, or by the
PgUp/PgDn keys.

Send Aftertouch

This check box can be used to activate the sending of (Polyphonic) Key Aftertouch MIDI messages if
you slide the mouse up and down a key while keeping one of the mouse buttons pressed. Note that not
all Pluglns will be able to react on Key Aftertouch, since devices that offer it are relatively rare.

Send Channel Pressure

This check box can be used to activate the sending of Channel Pressure MIDI messages if you slide
the mouse up and down a key while keeping one of the mouse buttons pressed.

Layout

Here, you can define how many keys starting at which key are displayed on the Keyboard Bar. If the
predefined values in the combo boxes don’t suit your needs, you can enter any reasonable value you
like.

| Keyboard Bar Configuration W‘
Keyboard | Wheels | Colors | MID| Output Devices

Wheel] Wheel g Wheel 3
Pitch Wheel w | | Modulation Wheel |~ || Maodulation Whael

Text Text Text
No butions v Mo butions w No butions *
[CIReverse [CReverse []14-bit [IReverse [¥]14-bit
[OT1ep [WIMid [IBet [[dTep [IMid 8ot ||[JTop [IMid []Bot
001: Modulation w || ||003 »
[0K] [Abbrechen

Figure 82: Keyboard Bar Configuration Dialog, Wheels Tab

On this tab, the wheels shown by the Keyboard Bar can be configured. There are three types of
wheels:

Pitch Wheel Can be used to send Pitch Wheel MIDI messages. Auto-centers when the
wheel is released.

Modulation Wheel Can be used to send a configured Continuous Controller MIDI message. By
default, this is set to send Mod Wheel data (CC#1), but it can set to any
other CC# you like (or need).

Velocity Wheel Can be used to increase or decrease the velocity for MIDI messages
generated with the PC keyboard.

You can set quite a lot of options for these wheels; have fun experimenting!

82

|J Keyboard Bar Configuration E’i\

Keyboard | Wheels | Colors MIDI Output Devices

Color for:

BlackKeys = Il [
—

[Qther Color..]

[OK] [Abbrechen

Figure 83: Keyboard Bar Configuration Dialog, Colors Tab

Here, you can redefine the color of the black and white keys, and the background color of the wheel
area, to any color scheme you like. Again, have fun experimenting!

|' Keyboard Bar Configuration E’i\

Keyboard | Wheels | Colors | MIDI Output Devices

Selectall used devices

" All loaded MIDI Output Devices ™
MIDIYoke NT: 7

[Ok][Abbrechen l

Figure 84: Keyboard Bar Configuration Dialog, MIDI Output Devices Tab

Normally, the Keyboard Bar is used to send MIDI messages to the loaded Pluglns. It can, however, be
used to send MIDI messages to attached MIDI devices that are connected to one of the configured
MIDI Output ports, too. Here, you can define these.

Capture Keyboard

This menu entry can be used to switch VSTHost’s Keyboard Capturing Mode. “Keyboard”, in this
case, is the alphanumeric input device with the 101 or more little buttons attached to the computer, not
a musical device. When this item is checked, VSTHost sends all keys that are pressed or released to
the Keyboard bar (see “Keyboard Bar” on page 80 for details), if they trigger an action there. If it is
not checked, the Keyboard bar only receives any keyboard activity when it has the input focus. This
allows you to play with a Plugln’s settings on its editor window and still be able to play some notes
with the computer keyboard.

Note: this also works if the Keyboard bar is currently hidden.

Attention: activating this can have unintended side effects; the keys are passed to the keyboard bar
regardless of the state that VSTHost is in — even if, for example, a file save dialog is open and you
want to enter a file name there. It would be a good idea to disable keyboard capturing before such
operations.

MIDI Player Bar

Selecting this menu item hides or shows the MIDI Player toolbar display. The MIDI Player toolbar has
already been discussed (see “MIDI Player” on page 76 for details).

83

Status Bar

This menu entry can be used to toggle the Status Bar on the bottom of VSTHost’s main window on or
off.

Status Bar Level Meter

The status bar can be used to show a little level meter, if you don’t use the Master window for that
(see “Master” below). Since this can be a bit irritating, it can be turned on or off with this menu entry.

Peak Value Level Meters

This setting configures how the level meters on status bar, the Master window, and the main windows
of the loaded effects work. If this setting is not checked, they display the level in RMS format. This is
the default since V1.38, since it uses less CPU cycles. When checked, the peak level (i.e., the level of
the loudest sample in the buffers running through the engine) is displayed.

Minimize to System Tray

Normally, when the VSTHost main window is minimized, it appears in the task bar, just like a normal
application. If this menu item is checked, however, it is minimized into the system tray of the task bar,
leaving only a little icon visible. Double-clicking this icon restores the VSTHost main window; right-
clicking it brings up a popup menu, which contains the normal VSTHost menu entries, plus a
“Restore” item, which does the same as double-clicking the icon.

This feature just saves some space on the task bar; I've been asked for it, and had the code at hand, so I
added it... decide for yourself whether it makes sense.

Skin

Since V1.44, the GUI of VSTHost can be radically changed. This has been called “skinning” in the IT
world for quite some time now, so I’ve adopted the (slightly rubbish IMO) term. Here, you can select
a “Skin file” (which is just a special .INI file) which holds all entries that define the current “look™ of
VSTHost. Included in VSTHost.zip, you should find a sample skin definition in the subdirectory
Data\DefaultSkin. The Skin.ini in this directory contains a complete description of all parameters that
can be modified.

After having selected a new skin for VSTHost, you have to close the application to put it into effect;
while new windows opened in VSTHost will already show the new skin, pre-existing windows and the
background won’t.

Vera Kinter has created some skins (see http://www.artvera-music.com for some more fine examples
of her creativity); these can be found on VSTHost’s web site (see page 2 for this).

Window Menu

Window
¥ Master
SysEx

Cascade
Tile
Arrange Ieons

Resize
v Check Max Size

1 Master
2 0: ASynth Frogram 0: Moogbassl
3 1: Classic Reverb Program 0: Default
¥ 4 2: Classic Delay Program 10: Your Sound

Figure 85: Window Menu

The contents of this menu vary with the number of loaded Pluglns and their various opened windows.
The first two menu entries, however, are always there:

84

http://www.artvera-music.com/

Master
Selecting this menu entry opens or activates the Master window:

HMH 4« B ® » I W DY

Figure 86: Master Window

The number of level meters on the right varies with the Wave Output device (and/or ASIO Channel

selection); there is one meter for each available audio channel. The faders on the left side are always
there. Each level meter has a little text display above it that shows the maximum output level sent to
this channel; clicking on one of these texts resets them all.

The Input fader can be used to set the overall input level of VSTHost’s audio engine.

The Output fader can be used to set the overall output level of VSTHost’s audio engine.

The Record fader can be used to set the recording level of the Wave Recorder.

The Play fader can be used to set the Wave Player’s level. This is independent of the setting of the
Master fader.

On the bottom, the Master window has a copy of the Recorder Toolbar for convenient tape recorder
operation; if you prefer the Master window, you can hide the Recorder Toolbar and vice versa.

SysEx
Selecting this menu entry opens or activates the SysEx window:
& sysEx Window &lo
Command Window Text
Display Window [V]Reset [JTed

Figure 87: SysEx Window

85

Here, you can load and/or save SysEx files in .syx format. This is a very simple file format, also used
by Midi-OX, for example; it’s just a set of SysEx messages without any protocol overhead.

There are two important windows here: the Command Window and the Display Window. Both accept
and display data in hexadecimal format, and, if the Text box is checked, in text format, too. You can
use the Tab and Backtab keys to switch between the two areas, if necessary.

The Command Window contains SysEx messages (and other interspersed MIDI messages — VSTHost
is agnostic when it comes to sending messages from this window ©) to be sent to the configured MIDI
devices and/or to interested Pluglns. Pressing the Load button opens a file selection window where
you can select a file to be loaded (surprise, surprise...). The contents of this file are taken 1:1;
VSTHost doesn’t check the contents, neither when loading it, nor when sending the data. You can use
this to send out complete garbage; be warned.

As soon as data have been entered or loaded from a file, the other buttons are activated. Save As...
well, Il let you find out what it does ©. Send sends out the contents of the Command Window, but
doesn’t check for any responses from the MIDI devices; Send/Receive sends them, too, but also turns
on reception of SysEx messages into the Display Window.

The Display Window contains messages received from the MIDI devices and/or Pluglns. Only SysEx
messages are processed; this works the same way as in Midi-OX (the whole SysEx window is
modeled after the Midi-OX SysEx window, just differing in details), and Jamie and Jerry know their
stuff pretty well, so I used the same logic.

Reception of MIDI data into the Display Window can be started in two ways. The first way, using the
Send/Receive button, has already been discussed above. The second way would be to press the Dump
button. This is useful if a MIDI device can only send manual dumps, triggered on the device itself. In
both cases, VSTHost starts to write incoming SysEx messages into the Display Window. If the Reset
box is checked, the previous contents of the window are cleared when reception starts; if not, they are
kept and new messages are simply appended.

As soon as reception starts, the Stop button is activated and a text field appears that informs you how
many bytes of SysEx data have currently been received into the Display Window. Pressing the Stop
button terminates SysEx reception — VSTHost doesn’t know or care about the incoming MIDI
messages’ format, since this is completely generic, so it can’t determine from the incoming data when
the transmission has been completed. I could, of course, add a timeout, following the logic: “If nothing
happened for 10 seconds, it looks like the transmission is over”, but that’s a bit unreliable; the whole
procedure needs manual operation, so having to press the Stop button is OK in my opinion.

Save As... does the same as on the Command Window, just for the Display Window’s contents.

Pressing the MIDI... button opens a dialog where you can select the MIDI devices that VSTHost
sends to and receives SysEx from; this is also used for files sent directly using the Send SysEx File
menu command (see “Send SysEx File” on page 77 for details). VSTHost normally sends SysEx
messages to and receives them from all interested Pluglns, too. Sending SysEx messages from the
SysEx window to a Plugln can be suppressed on the respective Plugln's MIDI configuration window
(see “MIDI Settings” on page 44 for details),receiving SysEx messages from Pluglns into the SysEx
Display Window can be suppressed by deselecting “All loaded MIDI Input devices” here.

86

Help Menu

Help
About VSTHost

Figure 88: Help Menu in its entire glory

This menu is not extremely helpful at all; as this is a spare time project, I haven’t found the time yet to
create a help file (don’t ask how long it took to write this manual!), so it contains only one entry:

About VSTHost

Selecting this menu entry opens the most important dialog of the whole program, the thing you’ve all
been waiting for:

About Y5THost E
VST Host Version 1.46
Copyright (C) 2001-2009 H. Seib

WST Flugin Technology by Steinbeng
AS|0 Technology by Steinberg

Figure 89: the equally glorious About dialog

... and with this extremely important information I’ll end this document.

... ahem...

... well...

... no. There's still more.

I added another menu item:

Manual

If you download VSTHost.pdf from the web site and put it into the same directory as the VSTHost
executable, this menu item will allow you to directly open the .pdf.

OK, but now it's really over.
Nearly.

There's one more item:

Donate

This menu item opens a little dialog that details how to send a donation. You will also see this dialog
once each time you install a new VSTHost version.

OK, but now it's really over.

Have fun using VSTHost!

Hermann Seib
Vienna, March 3™, 2021

87

Appendix A: Things you should never need
But if you do... you might need them desperately.

VSTHost got quite some features “under the hood” that are only useful in rare situations.
Consequently, there's no directly accessible user interface for them. They are detailed in this appendix.

Exception Handling

Shit happens.

It tends to happen quite often in an open environment such as VSTHost, where more than one program
and lots of Pluglns from many different manufacturers are put to work. VSTHost itself may contain
errors | haven't found yet, the Pluglns may contain errors, there may be subtle “misunderstandings” in
some features of the notoriously underdocumented VST implementation, ... the list is long.

VSTHost got some features that try to deal with this kind of problems.

The first one is that there is a special tracing version (see “tvsthostx86.zip” and “tvsthostx64.zip” on
page 11 for more details). If you run into a recurring problem, this can be used to produce detailed
diagnostics of what is done, where it's done, and (hopefully) what the error might be.

Sometimes, however, things can't be reproduced. If VSTHost dies a sudden death (“an unhandled
exception is raised”, in tech-speak), it tries to output a message box containing details about the cause
and location of the problem. People tend to send me a screen shot of this, which can be quite large —
and in previous versions, the contents could easily be too long to fit inside the message box anyway.
Since V1.55, VSTHost also copies the full message box text into the clipboard; you can simply fire up
your email program and paste them into the angry email you're about to send to me ©. Much shorter
(in size) and potentially much longer (in content) than the screen shot.

If one of VSTHost's bridging programs (see “Bridging” on page 35 for details) dies, it can't easily
output a message box, since (a) it's running invisibly in the background and (b) it might interfere with
the completely asynchronous processing in VSTHost. The tracing version, however, dutifully logs the
exceptions, and all versions paste them to the clipboard.

Additional .ini Files and Sections

VSTHost checks for additional .ini file entries in quite some situations. Some of the files checked are
self-documenting — see the files Data\effCanDos.ini and Data\hostCanDos.ini, which come with the
VSTHost package. These contain a header that details what you can accomplish with them.

The main initialization file, Data\vsthost.ini (or however it's really called — see “Set Data Path” on
page 32 for the reason behind this cautious wording ©) is created dynamically, however, and not all
sections that can be used are allocated in advance — in most installations, they are absolutely
unnecessary. You can easily enter them by hand; the Notepad editor that comes with Windows is
absolutely sufficient.

.ini File Layout

A section in the .ini file, in case you're new to this, is always started with a header that contains the
name of the section in square brackets, like [Settings], for example. Section names are unique — there
must not be more than one section with the same name in the .ini file. If VSTHost encounters this in a
file changed by hand, the sections are merged into one. Leading and trailing blanks in the section
name are ignored, and it's treated case-insensitive.

Each section contains a set of entries, each one on a single line, and in the form entry=value. Leading

and trailing blanks in the entry are ignored, and it's treated case-insensitive. Entries are unique, too — if
VSTHost encounters this in a file changed by hand, only the first entry is used.

88

Main .ini File
Here, now, are the sections and entries that VSTHost understands, but which are not automatically
added to the main initialization file, together with their default values:

[Settings]
Note: this section is always there, so you should search it in the main initialization file (see “Set Data
Path” on page 32 for details) and add your entries there, instead of adding a new section.

AsioOutputReady=0

Normally, when VSTHost uses an ASIO driver, it asks the driver whether it needs calls to
outputReady() to speed up processing. If the ASIO driver responds with “no”, VSTHost doesn't call
outputReady() during audio processing. To force the call anyway, you can set AsioOutputReady=1.

AsioPanel drivername=program path

AsioPanel32 drivername=program path
AsioPanel64 drivername=program path

Yes, there's a blank in the entry name. At least one ©

When an ASIO driver has been loaded, VSTHost allows to open its control panel using the ASIO
Control Panel menu entry (see page 15 for details). This, however, sometimes does not work — either
because the driver doesn't ave a control panel, or because the control panel only works in 32bit
applications, or... whatever. There are plenty of possible reasons.

If the sound card comes with a separate application that provides the configuration capabilities, you
can instruct VSTHost to use this application instead of the driver's control panel. drivername is the
name of the driver as it is shown in VSTHost's Wave Device selection dialog (see page 13 for details),
just without the leading “ASIO: “ text; program path is the complete file name of the configuration
program (%-delimited environment variables are automatically expanded).

The variant with appended “32” or “64” overrides the base setting in the corresponding (32 or 64 bit)
VSTHost. This allows to deal with the special case that a 32bit VSTHost can open the ASIO Control
Panel, whereas the 64bit variant cannot (because of a faulty 64bit ASIO driver) or vice versa, so that
both programs can use the same initialization file.

AsioSupportsTimeCode=1

Starting with v2, ASIO drivers can use a callback named bufferSwitchTimelInfo() which enhances
throughput a bit. If activated (see “AsioSupportsTimelnfo=1" below), this callback can receive time
code information, but may ask the host whether it's interested before calculating it. By default,
VSTHost says “Sure, go ahead, might be interesting”; if this causes problems in a faulty ASIO driver,
you can set AsioSupportsTimeCode=0 to prevent time code information generation.

AsioSupportsTimelnfo=1

Starting with v2, ASIO drivers can use a callback named bufferSwitchTimelnfo() which enhances
throughput a bit. Before doing so, the driver asks the host whether this is supported. VSTHost supports
it; if this causes problems in a faulty ASIO driver, you can set AsioSupportsTimelnfo=0 to enforce
the old bufferSwitch() semantics.

AutoMidi=0

This setting can be used to force VSTHost to automatically load the first usable MIDI input and output
device. Can be overridden by specifying /[no]automidi on the command line.

Avrt=1

See the /noavrt command line option described on page 26 for details.

89

BankSaveVersion=2

The VST SDK 2.4 defined an extended bank save format with a version number of 2; since V1.49,
VSTHost uses this format to save .fxb files. By setting BankSaveVersion=1, you can use the old
format.

BgTickmult=3

If VSTHost determines that it's running in the background (i.e., it's not the foreground window), it
reduces the screen updates a bit. This is mainly “thanks” to the WINE environment, which allows
VSTHost to be run on x86-based Linux systems; in this environment, frequent redraws in background
windows seriously ruin the overall system performance, so VSTHost does what it can to circumvent
the problem. Setting this value to 1 causes it to redraw as fast in the background as in the foreground;
any higher value multiplies the interval between the idle calls (see IdleMSecs below) by the given
amount when running in the background, so given the default values, VSTHost will only update the
screen about 6 times per second. No need to burn precious CPU cycles for something that isn't seen
anyway, since another window is currently on top...

Bridge32=<app start directory + AppName + “Bridge32.exe”>
Bridge64=<app start directory + AppName + “Bridge64.exe”>

These two settings can be used to define the names of the bridge programs used by VSTHost (see
“Bridging” on page 35 for details). In the default value, AppName is normally “VSTHost”, but if you
rename it to anything else, this would be the name prepended to “BridgeXX.exe” - and VSTHost
wouldn't find the bridge programs any more, unless you rename these, too. Either rename them
appropriately, or define their names (plus potentially applied additional parameters) here.

Bridge32Trace=<app start directory + AppName + “Bridge32.exe”>
Bridge64Trace=<app start directory + AppName + “Bridge64.exe”>

Same as above, but for the tracing version of VSTHost — this allows you to keep the normal and
tracing versions of VSTHost in the same directory, by renaming the tracing bridge programs. The
easier way would be to keep the tracing version in a separate directory and just set its initial
VSTHost.ini's data path to the same data directory as the normal version's (see “Set Data Path” on
page 32 for details).

DefReuseWavMid=1

This setting can be used to overrule VSTHost’s default setting for reusing wave and/or MIDI files if a
performance is loaded that doesn’t specify its own files. See descriptions for the /noreusewavmid
command line option on page 26 and the “Reuse Wave/MIDI Files” menu entry on page 67 for further
details.

ExceptionsFile=%DataPath%\Exceptions.ini

This setting can be used to override the name of the Exceptions file which is filled during Plugln scans
(see “Exceptions.ini” on page 96 for details). This setting could, in theory, be used to define various
Plugln subsets by filtering the unwanted Pluglns in each, but that's a really tedious method — you'd
have to create an exceptions file with the Pluglns to be filtered, then adjust the exceptions file name
here, then restart VSTHost, and then do a Fast Rescan to activate the new setup.

IdleMSecs=50

This setting defines the interval between 2 successive calls to the Pluglns' idle() functions, which are
used to update the Pluglns' editor windows. This defaults to 50ms, i.e., 20 times per second. Good
enough for me, but some people like faster updates. On modern machines, going down to 20 (i.e., 50
updates per second) should be no real problem — but keep in mind that it will increase the processor
load.

90

KillVSTKeys=1

Better leave this at its default setting. It can seriously disturb Pluglns that are not prepared for it. That
said... normally, VSTHost translates incoming keys into their VST counterpart when possible, and
then removes the key from the normal processing loop. When set to 0, the key is passed on as a
Windows message, too. Can be overridden by the /nokillvst command line parameter (see page 26 for
more details on this).

LevelMSecs=500

This setting defines the interval between 2 successive displays of the current output level in the status
bar (if that's activated — see “Status Bar Level Meter” on page 84 for details).

MainBgConnSize=5

VSTHost can display little “connectors” on the sides of the Pluglns' main windows that allows to set
connections between Pluglns to be set with the mouse (see “New Plugln” on page 33). On today's
vastly different monitors, this size can be too small to “hit” with the mouse in an easy way, so [made
it configurable.

If you don't want to see the connectors at all, set it to 0 or less; in this case, connections can only be
changed on the "Chain After" windows (see page 59).

MainBgLinkOffs=5

If connectors are displayed (see above), this setting can be used to determine how far apart they are
put. Default is (MainBgConnSize / 2) + 3 (i.e., 5, if unmodified) to give a little gap.

MaxChannels=32

Normally, VSTHost's audio engine uses a maximum of 32 for the number of channels. That's
sufficient for most configurations; sometimes, however, this limit may be too low. With this setting,
the maximum number of channels can be set to anything between 2 and 256. Can be overridden by the
/maxchn command line parameter (see page 26 for more details on this).

MenuBarBreak=30

When displaying the Plugln menu, VSTHost normally inserts a menu bar break (i.e., a switch to a new
column) every 30 entries; you can customize this here, if (a) that many items don't fit on the screen
vertically or (b) many more items would fit on the screen vertically and you don't want to waste the
space. This setting is only marginally checked by VSTHost; you can...

* totally ruin the menu layout by entering values below 4

» force VSTHost to display a single-column menu by entering a value like 9999
... so use this with care.

MenuBarSplitCols=5

When displaying the Plugln menu, VSTHost normally inserts a “split” (i.e., allocates another submenu
with a text of “...”") after every 5 columns; you can customize this here. Same caveat as for
MenuBarBreak above — be careful.

NoteOffVel=0x40

When generating Note Off MIDI messages, VSTHost uses this value as the velocity. Nearly all
Pluglns and external devices ignore this velocity information anyway.

NumProcessors=physical # processors

This setting can be used to override the number of processors used by VSTHost. Normally, all
available cores and processors are used, but you can set a different maximum here. This setting can be
overridden with the /numProcessors command line parameter (see page 26 for more details on this
setting).

91

OptRunningStatus=1

When set to anything other than 0, VSTHost tries to optimize outgoing MIDI messages for Running
Status usage — i.c., Note Off messages are translated to Note On messages with a velocity of 0 if
appropriate, so that intelligently written MIDI drivers (hee hee...) can optimize the MIDI output stream
a bit.

PercMSecs=750

This setting defines the interval between 2 successive displays of the CPU percentage used by
VSTHost.

PluginMenuCatOrder=1,4

This setting can be used to redefine the categorization order used when a categorized Plugln menu is
used (see “Categorize Pluglns” on page 37). It is a comma-separated list of integer values, defining
which categorizations are used, where each item corresponds to a menu level. The following
categorization values can be used:
Value Categorization

0 Plugln subpath (like the uncategorized listing does)

1 Architecture (VST2/3/MA in 32/64 bit)

2 Type (Effect, Instrument, MIDI, Shell)

3 Display Name (just for completeness’ sake - this can lead to LOTS of relatively senseless

submenus!)

4 Vendor Name

5 Product Name (just for completeness’ sake - this can lead to LOTS of relatively senseless
submenus!)

PluginsPerBridge=1000

This setting can be used to configure how many Pluglns VSTHost loads into one instance of the
bridge program (see “Bridging” on page 35 for details) before starting a new instance. The default
setting essentially means “keep it down to one bridge program”.

Lowering this setting to 1 would force each Plugln into a separate bridge program — which would
mean maximum overhead, but each Plugln would have the maximum of available memory... but
there's the /forceBridged command line parameter and the corresponding entry in effCanDos.ini for
that (see page 26 for more details on this) which allow a finer control, so changing this setting is not
really recommended.

ReloadWaveDelay=1000

It can happen that an ASIO driver requests VSTHost to reset it, either due to a severe internal error or
to reconfigurations done from the outside. In this case, VSTHost unloads the driver and, after this
delay, given in milliseconds, reloads it. In case of errors, it's advisable to let a little time pass (could be
due to fluctuations in the power supply, for example) before reloading; the delay can be configured
with this setting.

ShowParmIndex=0

Normally, VSTHost doesn't show the index for the parameters on a Plugln's parameter window (see
“Window” on page 42 for details). This can be overridden by adding this setting, with a value other
than 0.

SysExBufSize=256
SysExBufWait=60

These two settings are used to configure the SysEx window settings (see “SysEx” on page 85 for
details). When sending out the contents of the SysEx window, VSTHost splits the SysEx messages

92

into chunks of the maximum size given in SysExBufSize; after each buffer, it waits SysExBufWait
milliseconds before sending the next one.

These settings can become vital for Windows XP users; the Windows 2000/XP standard MIDI driver
(which is used by a lot of [especially cheap] USB MIDI devices) is severely buggy and doesn't play
nice when confronted with partial SysEx messages. This can result in faulty messages being sent out
to the device. If you got such a setup and have to transmit SysEx messages that are longer than the
default value of 256, setting SysExBufSize=65530 can cure the problem.

TraceBase=0x60000000
TraceMask=0x7FFFFFFF

These two settings are only interesting for the tracing version of VSTHost; the normal version simply
ignores them. Together, they determine what VSTHost traces, and how. Normally, you won't need
this, but if you're trying to correct a problem with my help, I might request a trace file from you, and
in this case, the settings might become interesting.

The tracing version of VSTHost contains a lot of texts that can be written to the trace file while the
program is running, thereby creating a rather precise “trace” of the program functionality. The trace
output can be expanded or reduced by setting up these settings.

Each trace output falls into one or more categories, each of which takes up one bit in a 32-bit word.
When writing the traces, VSTHost first adds the settings in TraceBase to this word, and then removes
those bits from the word that are not set in TraceMask. VSTHost only outputs traces that come out
with at least one bit between position 0 (i.e., lowest bit) and 27 set in the result; the uppermost 4 bits
are used to determine the trace output format.

Here are the bits currently defined for VSTHost:

Bit number Setting

0 “Anything else” - i.e., anything that doesn't fall in one of the below
categories.

Organizational details

ASIO-related traces

MME-related traces

DirectSound-related traces

MIDI-related traces

Audio processing related traces

VST related traces

High-resolution timer related traces

O |0 | QI | NN | B |W N~

Slave-processing related (see separate “Slave Mode” document)

—_
()

Window painting system related traces

—
—

Joystick-related traces

—_
[\

OSC-related traces

—_
w

User exit related traces

._.
n

Bridge processing related traces

—
()]

Windows message traces (use with caution — massive amount of data!)

N
|

Add the trace level (one or more of the above) to the trace file entry

[\
o0

Add the process ID to the trace file name

93

Bit number Setting

29 Prepend the thread ID to the trace file entry
30 Prepend timestamp to the trace file entry
31 Flush trace file after writing this entry

Normally, the traces are buffered; i.e., they are only written to disk when a
fair amount of text has been collected. This ensures that the tracing process
doesn't slow down the system too much. VSTHost uses this flag on some of
the “hairier” traces when it might be possible that the next activities kill the
program; if it is set permanently, it gives a highly accurate trace, since
VSTHost can't die without the latest traces having been written out to disk,
but it also means permanent disk activity which slows down everything.

TraceBreak=0

This setting is only interesting for the tracing version of VSTHost; the normal version simply ignores
it. The setting defines the number of bytes that should go into a trace file; when set to anything >0,
VSTHost breaks the trace file after roughly that amount (“roughly” since it checks affer writing the
trace, so the file might be some bytes larger than the boundary). Since defining large file sizes would
be rather cumbersome otherwise, you can add the following suffixes: K — the number is a multiple of
1024 (i.e., kibibytes); M — the number is a multiple of 1024*1024 (i.e., mebibytes); G — the number is
a multiple of 1024*1024*1024 (i.e., gibibytes). So, “TraceBreak=100M” would break every 100
mebibytes.

TraceKeep=0

This setting is only interesting for the tracing version of VSTHost; the normal version simply ignores
it; and even in the tracing version, it is only used if TraceBreak (see above) is set. In this case, it
defines the number of trace files that is kept (to prevent filling the hard disk with traces).

TranslateNoteOff=1

This setting can be used to define whether VSTHost translates incoming Note On MIDI messages
with a velocity of 0 into Note Off messages before passing them to the loaded Pluglns. Normally, this
is done, and I'd leave it at that... but you can change it here by setting the value to 0.

UserExit=
UserExit32=

UserExit64=

This setting can be used to force VSTHost to load a specific User Exit DLL. Currently only one User
Exit DLL has been created for the Lionstracs Mediastation (see www.lionstracs.com for details) to
allow a better integration into this environment. This setting can be overridden by the /userexit
command line parameter (see page 26 for more details on this).

If both the 32- and 64-bit version of VSTHost use the same .ini file, you should use the UserExit32=
and UserExit64= notation, since VSTHost can only load User Exit DIIs of the same “bitness” as the
main program.

VSTXML_Ext=1

Normally, VSTHost exports XML Definitions in an extended VSTXML format (see “Export XML”
on page 61 for details) for VST2 Shell Pluglns, VST Module Architecture Pluglns, and VST3 Pluglns.
Since this might interfere with other host's interpretations of VSTXML files, you can force VSTHost
to use the original VST 2.4-compatible format by adding the setting

VSTXML_Ext=0

to the section.

94

http://www.lionstracs.com/

Note: VSTXML_Ext=0 limits the VSTXML files to one single Plugln definition — even if a Shell or
VST3 Plugln contains many different internal Pluglns, only the currently loaded one is written into the
file. Pre-existing definitions for others are lost, and when the file is loaded for another one of these
internal Pluglns, the definitions might be totally wrong if a parameter has the same ID, but different
name and/or type and/or range in the Pluglns. In short, only do this if it's 7eally necessary.

VUFadeMSecs=1700

This setting defines the time in milliseconds that the VU meters in VSTHost take to “fade” from
maximum to zero. Always displaying an accurate value would give a very jumpy display — and you
might miss some short peaks, so VSTHost — like practically any other audio-processing program, and
like hardware mixing consoles — lets the meter rise very quickly if a higher value is to be displayed,
but lets it fall rather slowly. Shorter values give a more precise, but also much more “nervous” display.

VUMaxMSecs=1000

This setting defines the time in milliseconds that the VU meters in VSTHost remember the current
maximum value.

WSetMin=4194304
WSetMax=41943040

These two can be used to change the working set size used by VSTHost. These two are mainly
included because I like to have an “adjusting screw” for every possible setting. Normally, best left
alone; if you really want to know what this is about, google for SetProcessWorkingSetSize.

[ASIOignore]
[DSoundignore]
[MMEignore]
[MIDlignore]
[MIDIlinignore]
[MIDIOutignore]

These sections are normally not there; they are only necessary when a specific audio or MIDI driver
ruins your “experience”, as they say nowadays...

VSTHost is a bit peculiar in one respect: it always checks all available audio and MIDI drivers when it
starts up and tries to determine their capabilities. Sometimes, it comes across a driver that's still
installed in your system — but the corresponding hardware device has long been abandoned... and this
can cause some of these drivers to crash. In such a case, you can force VSTHost to ignore the driver
by adding an entry for it to the matching section. Let's say that you got an ASIO driver for a “Meetoo
895 ASIO” device and this crashes VSTHost. In this case, adding the section

[ASIOignore]

Meetoo 895 ASIO=1

to VSTHost's main initialization file should prevent it from being seen by VSTHost.

Now, the trick of course is to find out which driver kills VSTHost, and its name... for this, you can use
the tracing version of VSTHost (see VSTHost's web site for this — address is given at the start of this
document). VSTHost should trace the names of the drivers it's trying to load, and this should lead you
to the killer and name it, too.

... and while you're at it, you might want to remove the killer from your system in the same session

which would make adding the section irrelevant ©... but you can't always easily do that, that's why
VSTHost can be customized to ignore the bugger.

95

[ASIOForcePreferred]

This section is normally not there; it's checked to cure a very peculiar problem with some ASIO
drivers.

Normally, ASIO drivers tell the host something like “minimal buffer size 16, maximal buffer size
1024, preferred buffer size 256 - i.e., they let the host choose which buffer size it wants to use, within
certain constraints. Some drivers, however, tell that they can use a wide range of buffer sizes — but
refuse to work if anything but the preferred buffer size is set.

Let's say that you got an ASIO driver for a ZOOM G7 device (that's what the option was added for)
and this doesn't work if you define an “unwanted” buffer size. In this case, adding the section
[ASIOForcePreferred]

ZOOM G Series ASIO=1

to VSTHost's main initialization file should prevent it from being set to anything but its preferred
buffer size by VSTHost.

Exceptions.ini

This file is created in VSTHost's Data path (see “Set Data Path” on page 32 for details) during the
Plugln scans (see “Rescan Pluglns” and “Fast Rescan Pluglns” on page 37 for details). The file name
can be overridden with the “ExceptionsFile” setting (see page 90 for details).

[Pluglns]

This section should normally be empty. If, however, VSTHost encounters serious problems while
loading and checking a potential Plugln file, it adds this file to the list of “known enemies” - files it
cannot reliably load (technically spoken, it adds the file names before checking and removes them
after all went well). When the scan operation is tried again, VSTHost knows it can't load this file, and
doesn't try again.

There are two forms a line can have:

<PlugInName>=bad The file causes problems when VSTHost tries to load and
examine it.

<PlugInName>=unusable The file is not of a type that can be loaded as a Plugln into
VSTHost. Normally, this means it's a support DLL for a Plugln.

This has consequences, of course; if you install an updated version of the Plugln that can be loaded
into VSTHost, the scan still ignores it, so it never appears in VSTHost's Plugln menu. In such a case,
you can locate the line

<file name of your Plugin>=reason
in the [Pluglns] section of Exceptions.ini and remove it by hand. The next time VSTHost is told to
rescan the Plugln list, it will find (and, if all goes well, add) the Plugln.

Since V1.56, VSTHost also checks whole directories against this list; this, however, is not
configurable from the UI. To exclude a complete directory from the scanning process, you have to add
it manually by adding a line to the [Pluglns] section in the form

<DirectoryPart>=whatever

The right part after the '=' in all cases is completely irrelevant to VSTHost; it just has to be there and

contain some text. The bad and unusable texts are useful diagnostic tools, but not mandatory for
your own entries.

96

Appendix B: OSC Implementation

This appendix details VSTHost's OSC implementation.

What is OSC?

Open Sound Control (OSC) is a general protocol for encapsulating and organizing control among
multi-layered systems for musical applications and is gaining increasing attention; especially new
input devices like the iPad or the JazzMutant Lemur make it increasingly interesting. OSC is
developed at The Center for New Music and Audio Technology (CNMAT) at UC Berkeley by Matt
Wright and others.

OSC defines the layout of messages that can be sent between OSC-conforming applications. These
messages have a simple syntax — they define an address and optional parameters. The address is given
in the form of a hierarchical string, delimited by forward slashes ('/'). For details regarding the
protocol, please visit http://opensoundcontrol.org.

Unfortunately, OSC is a very loosely specified protocol — only the bare necessities, like “how must a
message look to be OSC-conforming”, are defined, but not a bit above that. The greatest problem is
that there's no request/response mechanism is defined, so it's up to the OSC-conforming applications
to define their own... which quite some have already done.

VSTHost has built-in support for the following OSC parameter types:
Type Content

32-bit big-endian two's complement integer
32-bit big-endian [EE 754 floating point number
OSC string (see OSC documentation on this)
OSC blob (see OSC documentation on this)
True / False / Nil / Impulse
OSC timetag in NTP format
64-bit big-endian two's complement integer
64-bit big-endian IEE 754 floating point number
32-bit big-endian character
RGBA value
m 4-byte MIDI message (port ID, status byte, data 1, data 2)
although only some are used at the moment. VSTHost tries its best to convert incoming parameters
into the format required internally.

~
n

K Q Qo 30 n e
s
=z
—

VSTHost uses a slightly reduced version of the system introduced by Open Sound World (see
http://osw.sourceforge.net for details), which looked like a good compromise between complexity and
capabilities to me.

VSTHost acts as a passive server - it doesn't actively send OSC messages around, but receives queries
and sends responses to these back to the caller. Each query is followed by one or more responses.

VSTHost Address Space

If you're not sure what an address space is in OSC, please visit http://opensoundcontrol.org — it's all
explained there, and I don't feel the pressing need to copy the original text into VSTHost's
documentation.

lengine
The /engine container holds all settings of the VSTHost engine. At the moment, there aren't many, but
this will surely change.

97

http://opensoundcontrol.org/
http://osw.sourceforge.net/
http://opensoundcontrol.org/

Returns: the number of available entries in the /engine container.

/engine/bpm [bpm]
The /engine/bpm address returns the currently configured BPM rate. A new BPM rate can be passed

(either as an integer or floating-point value).
Returns: the currently set BPM rate.

/engine/channels

The /engine/channels container holds the engine's I/O configuration.
Returns: the number of available entries in the /engine/channels container.

/engine/channels/in [inputs]

The /engine/channels/in method returns the number of engine input channels. A new number of inputs
can be passed as an integer value.
Returns: the currently configured number of engine inputs.

/engine/channels/out [outputs]

The /engine/channels/out method returns the number of engine output channels. A new number of
outputs can be passed as an integer value.
Returns: the currently configured number of engine outputs.

/engine/run [on]

The /engine/run method returns whether the engine is running. A new state can be passed as an integer
or boolean value.
Returns: the current state in boolean form (T/F).

/engine/signature [num denom]

The /engine/signature address returns the currently configured signature as 2 integers, containing the
current signature’s numerator and denominator (so, a 7/8 signature would be returned as 7 8). A new
signature rate can be passed as two integers, or as a string of the format “num/denom”.

Returns: the currently set signature.

Iperformance
The /performance container holds all performance-related settings.

/performance/num [num]

The /performance/num method returns the currently loaded performance number. A new performance
number to load can be passed as an integer value in range -1 .. 127.
Returns: the currently set performance number in the current bank.

Iplugin
The /plugin container allows access to all currently loaded Pluglns, labeled 0..(n-1). Pluglns 0 and 1

are always available; these are the Input and Output built-in Pluglns.
Returns: the number of currently loaded Pluglns (at least 2).

/plugin/n
The /plugin/n container (where n is a number between 0 and the number of currently loaded Pluglns —

1) allows access to a Plugln's settings.
Returns: the Plugln's DLL path

98

/plugin/n/path
The /plugin/n/path method returns the Plugln's DLL path, if it has one (the built-in Pluglns don't).
Returns: the Plugln's DLL path

/plugin/n/displayname
The /plugin/n/displayname method returns the Plugln's display name (i.e., the displayed name).
Returns: the Plugln's displayed name

/plugin/n/numparameters
The /plugin/n/numparameters method returns — guess — the number of parameters in this Plugln.

/plugin/n/numprograms
The /plugin/n/numprograms method returns the number of programs in this PlugIn.

/plugin/n/bypass [on]

The /plugin/n/bypass method returns a Plugin's Bypass state (if this is possible — for Pluglns without
any audio inputs and outputs, it isn't). A new state can be passed as an integer or boolean value.
Returns: the current state in boolean form (T/F).

/plugin/n/mute [on]

The /plugin/n/mute method returns a Plugln's Mute state. A new state can be passed as an integer or
boolean value.
Returns: the current state in boolean form (T/F).

/plugin/n/parameter

/plugin/n/parameter is the container for the Plugln's parameters; labeled 0..(numparameters-1).
Returns: the number of parameters in this Plugln, followed by their names (since they're all numeric,
the abbreviation “0” “..” “numparameters-1 is used if there are more than 2).

/plugin/n/parameter/p [value]

/plugin/n/parameter/p is a method as well as a container; as a method, it returns the parameter's current
value as a floating-point value. A new value can be optionally passed in, also in floating-point format,
or in text format if the Plugln supports that. p contains the parameter number in the range 0 to (number
of parameters — 1).

Returns: the (current or new) value of the parameter

/plugin/n/parameter/p/name
The /plugin/n/parameter/p/name method returns the name of the parameter.

/plugin/n/parameter/p/label
The /plugin/n/parameter/p/label method returns the label of the parameter.

/plugin/n/parameter/p/display
The /plugin/n/parameter/p/display method returns the display value of the parameter.

/plugin/n/program [current]

/plugin/n/program is a container for the Plugln's programs, labeled 0..(numPrograms-1), as well as a
method; the new current program can be passed in as a parameter.
Returns: the current or new program number

99

/plugin/n/program/p

The /plugin/n/program/p container holds a program's settings; p is the number of the program in the
range (0..numPrograms-1).
Returns: Name of the program

/plugin/n/program/p/name
The /plugin/n/program/p/name method returns the name of program p.

100

	Introduction
	What is VST?
	What is ASIO?
	More Information on VST, ASIO and PlugIns
	What is VSTHost?
	Evolution

	What does it cost?

	Installation
	Requirements
	Packages
	vsthostx86.zip
	vsthostx64.zip
	dvsthostx86.zip
	dvsthostx64.zip
	vsthostw98.zip
	tvsthostx86.zip
	tvsthostx64.zip

	Additional useful packages
	Attention Upgraders!
	Configuration
	Audio Configuration
	ASIO Control Panel
	ASIO Channel Selection
	MIDI Configuration
	MIDI Input Devices
	MIDI Output Devices
	MIDI Thru
	MIDI Clock Output
	Remote Control Port

	Joystick Configuration
	Joystick n XYZ
	Joystick n RUV
	Joystick n POV
	Joystick n Buttons m-n
	MIDI Output Devices

	Other Configuration Tasks

	Deinstallation
	Operation
	Command line parameters
	Syntax

	Multiprocessor provisions
	Technical explanation
	Thread Start Points

	Main Window
	Menu Entries
	File Menu
	Use Bank…
	Set Data Path
	New PlugIn
	Bridging
	JBridge

	Shell PlugIns

	PlugIn Auto-Connect
	Set PlugIn Path
	Rescan PlugIns
	Fast Rescan PlugIns
	Rescan on Start
	Force Bridged Rescan
	Use PlugIn File Names
	Categorize PlugIns
	PlugIns
	Builtin PlugIns
	Audio PassThru
	Delay
	Level to Parameter
	Mid/Side to Stereo
	MIDI Modify
	MIDI PassThru
	Parameter PassThru
	Reverb
	Stereo to Mid/Side
	Submixer

	Exit

	PlugIn Menu
	Window
	Configure
	Auto-Stereo
	Double Precision Audio
	Speaker Configuration

	MIDI Settings
	MIDI Input Devices
	Filter Settings and Transformations
	Filter Settings
	Special Filter
	Transformations
	Velocity Curve
	Channel
	Transposition
	Toggling Notes

	MIDI Output Devices
	Remote Control Port

	MIDI -> Parameter
	Incoming MIDI Message
	Translation to...
	Outgoing Parameter Change

	Parameter -> MIDI
	Incoming Parameter Change
	Translation to...
	Outgoing MIDI Message

	Permanent
	Load Bank
	Save Bank
	Save Bank As
	Autosave Bank
	Reload Bank
	Bypass
	Mute
	Chain After
	Unchain
	Export XML
	VSTXML Format Extension

	New Instance
	Close
	Program Name
	Load Program
	Save Program As
	Next Program
	Previous Program
	Export Programs
	Programs mm-nn

	Performance Menu
	Load
	Save
	Save As
	Next
	Previous
	Export
	Import
	Reload
	Autosave
	Autosave PlugIn Banks
	Mute On Load
	Reuse Wave/MIDI Files

	Engine Menu
	Run
	Restart
	Configure
	Input Assign
	Output Assign
	Priorities
	Speed
	OSC

	Audio Thru
	Soft Clipping
	BPM
	Load BPM
	Recorder
	Add to Input
	Autorepeat
	Autorepeat Winding
	Player Sync
	Player File
	Configure Recorder
	Pre-Fader Recording
	MIDI Player
	Autorepeat
	Player File
	Configure MIDI Player
	Use Engine’s BPM
	Set Engine’s BPM
	Player Sync
	Midi Panic
	Send SysEx File

	Devices Menu
	View Menu
	Auto Edit
	Linear Knobs
	Toolbar
	Recorder Bar
	Keyboard Bar
	Configure Keyboard Bar
	Octave Indicators
	Key Labels
	Monophonic Keyboard
	Channel
	Velocity
	Send Aftertouch
	Send Channel Pressure
	Layout

	Capture Keyboard
	MIDI Player Bar
	Status Bar
	Status Bar Level Meter
	Peak Value Level Meters
	Minimize to System Tray
	Skin

	Window Menu
	Master
	SysEx

	Help Menu
	About VSTHost
	Manual
	Donate

	Appendix A: Things you should never need
	Exception Handling
	Additional .ini Files and Sections
	.ini File Layout

	Main .ini File
	[Settings]
	AsioOutputReady=0
	AsioPanel drivername=program path
	AsioPanel32 drivername=program path
	AsioPanel64 drivername=program path
	AsioSupportsTimeCode=1
	AsioSupportsTimeInfo=1
	AutoMidi=0
	Avrt=1
	BankSaveVersion=2
	BgTickmult=3
	Bridge32=<app start directory + AppName + “Bridge32.exe”>
	Bridge64=<app start directory + AppName + “Bridge64.exe”>
	Bridge32Trace=<app start directory + AppName + “Bridge32.exe”>
	Bridge64Trace=<app start directory + AppName + “Bridge64.exe”>
	DefReuseWavMid=1
	ExceptionsFile=%DataPath%Exceptions.ini
	IdleMSecs=50
	KillVSTKeys=1
	LevelMSecs=500
	MainBgConnSize=5
	MainBgLinkOffs=5
	MaxChannels=32
	MenuBarBreak=30
	MenuBarSplitCols=5
	NoteOffVel=0x40
	NumProcessors=physical # processors
	OptRunningStatus=1
	PercMSecs=750
	PluginMenuCatOrder=1,4
	PluginsPerBridge=1000
	ReloadWaveDelay=1000
	ShowParmIndex=0
	SysExBufSize=256
	SysExBufWait=60
	TraceBase=0x60000000
	TraceMask=0x7FFFFFFF
	TraceBreak=0
	TraceKeep=0
	TranslateNoteOff=1
	UserExit=
	UserExit32=
	UserExit64=
	VSTXML_Ext=1
	VUFadeMSecs=1700
	VUMaxMSecs=1000
	WSetMin=4194304
	WSetMax=41943040

	[ASIOignore]
	[DSoundignore]
	[MMEignore]
	[MIDIignore]
	[MIDIInignore]
	[MIDIOutignore]
	[ASIOForcePreferred]

	Exceptions.ini
	[PlugIns]

	Appendix B: OSC Implementation
	What is OSC?
	VSTHost Address Space
	/engine
	/engine/bpm [bpm]
	/engine/channels
	/engine/channels/in [inputs]
	/engine/channels/out [outputs]
	/engine/run [on]
	/engine/signature [num denom]

	/performance
	/performance/num [num]

	/plugin
	/plugin/n
	/plugin/n/path
	/plugin/n/displayname
	/plugin/n/numparameters
	/plugin/n/numprograms
	/plugin/n/bypass [on]
	/plugin/n/mute [on]
	/plugin/n/parameter
	/plugin/n/parameter/p [value]
	/plugin/n/parameter/p/name
	/plugin/n/parameter/p/label
	/plugin/n/parameter/p/display
	/plugin/n/program [current]
	/plugin/n/program/p
	/plugin/n/program/p/name

